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Summary

Some of the most challenging problems in control typically
consist of minimizing an objective function under safety

constraints and physical limitations. These often conflict-
ing requirements render classical stabilization-based con-
trol design tricky, and even modern learning-based alter-
natives rarely provide strict safety guarantees ‘out-of-the-
box’. Safety filters address this limitation through a modular
approach to safety. The first part of this article formalizes an
ideal safety filter to enhance any controller with safety guar-
antees and provides a tutorial-style exposition of invariance-
based methods using Hamilton-Jacobi reachability, control
barrier functions, and predictive control related techniques.
While the first part assumes perfect knowledge of the system
dynamics, the second part bridges the gap toward real-
world applications through data-driven model corrections.
To this end, deterministic-, robust-, and probabilistic model
learning techniques are outlined, and a selection of mini-
tutorials for learning-based safety filters is provided. The
article concludes with recent applications to demonstrate
the capability of various safety filter formulations when com-
bined with stabilizing controllers, learning-based controllers,
and even humans.
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T
oday’s control engineering problems exhibit an
unprecedented complexity, with examples includ-
ing the reliable integration of renewable energy
sources into power grids [1], safe collaboration
between humans and robotic systems [2], and

dependable control of medical devices [3] offering person-
alized treatment [4]. In addition to compliance with safety
criteria, the corresponding control objective is often multi-
faceted. It ranges from relatively simple stabilization tasks
to unknown objective functions, which are, for example,
only accessible through demonstrations from interactions
between robots and humans [5]. Classical control engineer-
ing methods are, however, often based on stability criteria
with respect to set points and reference trajectories and
can therefore be challenging to apply in such unstructured
tasks under consideration of potentially conflicting safety
specifications [6, Section 3 & 6]. While control experts and,
increasingly, learning-based control methods tackle these
challenges from various angles, missing safety certificates
often prohibit the widespread application of innovative
designs outside research environments. As described in
“Summary,” this article provides an introduction to safety
filters together with advanced data-driven enhancements
as a flexible framework to overcome these limitations.

To illustrate the fundamental challenges in guarantee-
ing safety for dynamic systems, consider a vehicle driving
on a road as depicted in Figure 1. Depending on a specific
vehicle state, including current position, current velocity,
and relative heading to the road, taking a particular control
action can either maintain a safe system state or put the
car at risk. Thereby, the difficulty arising in safety critical

1066-033X/20©2022IEEE JUNE 2020 « IEEE CONTROL SYSTEMS 1



dynamical systems is that unsafe control actions will only
cause constraint violations at some point in the future. For
example, if the steering angle does not correspond to the
road’s curvature for a fraction of a second, it might be
unavoidable that the car goes off track, as depicted by the
red trajectory in Figure 1. Safety filters detect such unsafe
input control signals before constraint violations occur and
minimally modify them to ensure safety, as illustrated by
the green trajectory in Figure 1.

Three primary research directions have evolved over
the past decades to tackle such safety-critical control
problems, providing the core mechanisms of safety fil-
ters: Invariance- and reachability-based methods [7]–[10],
control barrier functions [11], [12], and predictive control
techniques [13], [14]. Although they all address the same
fundamental problem of ensuring safety, they have devel-
oped relatively independently in their respective research
areas. In recent years, however, joint research efforts have
demonstrated tremendous potential by combining the core
competencies of each field, enabling high-performance
safety-critical applications and promising perspectives for
future research [15]–[20].

Despite the differences and connections between the
fields, all methods rely on a mathematical model that
describes the evolution of the dynamic system in order
to ensure safety at all times. The derivation, identification,
and verification of these high-fidelity system models are
among the most time-consuming tasks in the design phase
of safety-critical controllers [21]. To reduce this effort, the
increasing availability of low-cost sensing and connectivity
capabilities and growing computational resources have
triggered research efforts across all fields toward the safe
use of data-driven models [22]–[24].

This article provides a comprehensive introduction to
the previously described aspects of recent safety-critical
control research. We present an idealized safety filter prob-
lem and demonstrate the capabilities of safety filters based
on reachability, control barrier function, and predictive
control to provide an approximate solution. Once the basic
principles are in place, more recently discovered intercon-
nections between the methods are presented to open new
perspectives for future research and applications. It is then
shown how to enhance the core concepts through data-
driven models and how robust and probabilistic uncer-
tainty bounds can be incorporated to ensure safety with
high confidence. While we present a selection of successful
techniques and state-of-the-art applications, this direction
represents a promising dimension worth investigating in
the future. The literature introduced throughout this article
is summarized in Table 1, which contains relevant histori-
cal developments mentioned at several places.

Current
state

Unsafe control
action

Safety filtered
control action

Safety violation
Safe
behavior

FIGURE 1 Intuitive illustration of safety problems in control using a
vehicle. Application of an unsafe control input can result in safety
constraint violation at some point in the future. This is depicted
by the red trajectory, where the vehicle ends up leaving the track.
The goal of this article is to present safety filters, which detect and
minimally modify such unsafe inputs to ensure safety for all times.

Outline of the Article
We begin by stating the class of safety-critical nonlinear
dynamical systems considered in this article and formalize
the desired safety filter module in the form of an optimal
control problem. Using this problem formulation, we intro-
duce the fundamental concept of set invariance, followed
by techniques for designing and implementing safety fil-
ters via Hamilton-Jacobi reachability, control barrier func-
tions, and predictive control methods. The similarities and
differences of these three methods are highlighted through
a simple illustrative example, and a discussion on recent
research efforts integrating aspects of these three methods
is provided. In the second part of the article, we consider
the challenge of safety-critical control in the context of
uncertain nonlinear systems. We discuss how the preced-
ing methods for safety filter design can be modified to
incorporate data-driven components, highlighting ongoing
research efforts and reviewing examples of state-of-the-art
data-driven safety filter applications.

Definitions and Notation
The natural, real, non-negative real, and positive real num-
bers are denoted as N, R, R≥0 = [0, ∞), and R>0 =

(0, ∞), respectively. The identity matrix of dimension n
is denoted as In. Given a set A ⊆ Rn, we denote its
interior as int(A), its boundary by ∂A, and its complement
Ac = Rn \ A. The signed distance function for the set
A, sA : Rn → R, is defined as sA(x) = infy∈A ∥y − x∥
if x ∈ Rn \ A and sA(x) = − infy∈Rn\A ∥x − y∥ for
x ∈ A. Given two sets A and B, we denote the space
of continuous functions, piecewise-continuous functions,
and continuously differentiable functions mapping A to
B by C(A,B), PC(A,B), and C1(A,B), respectively. A
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Safety Filter
κF(x(t), udes(t))

System ẋ(t) =

f (x(t), u(t))

x(t)u(t)

Safety enhanced system

Desired
control signaludes(t)

FIGURE 2 Illustration of the safety filter concept. A desired control
input udes(t) is processed by the safety filter to produce a control
input signal u(t) = κF(x(t), udes(t)) that is applied to the system to
ensure that safety is maintained at all times.

continuous function α ∈ C([0, a), R) for some a > 0 is said
to be class K (α ∈ K) if it is strictly increasing and α(0) = 0,
and is said to be extended class K (α ∈ Ke) if it is a class
K function defined on (−a, b), with a, b > 0.

THE SAFETY FILTER PROBLEM WITH KNOWN
SYSTEM DYNAMICS
This article considers the construction of safety filtering
mechanisms for nonlinear control systems, which can be
described by the differential equation

ẋ = f (x, u), (1)

where x ∈ Rnx is the system state and u ∈ Rnu is
the control input. For simplicity, we assume that the
function f is continuously differentiable, that is f ∈
C1(Rnx × Rnu , Rnx ), and that for any initial condition
x0 ≜ x(0) ∈ Rnx and piecewise-continuous control input
signal u(·) ∈ PC(R≥0, Rnu ), there exists a unique solution
x(·) ∈ C(R≥0, Rnx ) to (1) for t ∈ R≥0.

Safety for the system (1) is mathematically encoded via
a state constraint set X ⊂ Rnx and an input constraint set
U ⊂ Rnu that must be respected during the evolution of
the system, that is

x(t) ∈ X and u(t) ∈ U for all t ∈ R≥0. (2)

This article is specifically concerned with ensuring this
safety requirement is met when the system is presented
with a piecewise-continuous desired control input signal,
udes(·) ∈ PC(R≥0, Rnu ), that does not necessarily enforce
safety of the system. Such desired input signals are often
generated by controllers hand-designed by domain spe-
cialists, learning-based controllers that maximize a partic-
ular reward signal, or human input to the system.

A safety filter κF : Rnx × Rnu → U (see Figure 2)
modifies this desired control input signal to produce an
input signal u(t) = κF(x(t), udes(t)) that ensures the sys-
tem respects the safety constraint (2), while minimally
modifying the desired input signal, that is, minimizing the

deviation ∫ ∞

t=0
∥κF(x(t), udes(t))− udes(t)∥ dt, (3)

with the goal of preserving as much of the desirable
behavior achieved by udes(·) as possible. Thus, for any
initial condition x0 ∈ X , an ideal safety filter would
return a piecewise-continuous input signal u that solves
the optimization problem

u(·) = argmin
v(·)

∫ ∞

t=0
∥v(t)− udes(t)∥ dt (4a)

s.t. v(·) ∈ PC(R≥0,U ) (4b)

x(0) = x0, (4c)

for all t ∈ R≥0 :

ẋ(t) = f (x(t), v(t)), (4d)

x(t) ∈ X . (4e)

While (4) characterizes an ideal safety filter, it is rarely
possible to tractably implement for the following reasons:

» The desired input signal udes(·) is typically not
known a priori, and can only be accessed at the
current time t during closed-loop operation. Exam-
ples include when udes(·) is specified by a feed-
back controller, learning-based control applications
with randomized inputs applied during exploration,
and applications with humans in the loop directly
providing the desired control action, for example,
in the teleoperation of robots or for driver assistant
systems.

» The optimization problem (4) is not necessarily fea-
sible for each initial condition x0 ∈ X . Thus, initial
conditions will need to be restricted to a subset
S ⊆ X of the state constraint set for which (4) is
known to be feasible, and the evolution of the system
must be constrained to remain in the set S .

We will next tackle these challenges through permissive
approximations of the ideal safety filter formulation (4).

SAFETY FILTER METHODOLOGIES
In this section we review three main approaches for
approximating the idealized safety filter defined by the
optimization problem (4). We begin by reviewing the
fundamental notion of set invariance, which underlies all
of the presented approaches. The first approach we present
builds upon the foundational result of Nagumo’s theorem
to build a switching safety filter. The conservative nature of
this approach is then improved by constructing invariant
sets using Hamilton-Jacobi reachability. We next review
control barrier functions (CBFs) which rely on a Lyapunov-
like derivative condition to smoothly enforce safety of a
system. Lastly, we review recent advances in predictive
safety filters (PSFs), which utilize a receding-horizon op-
timal control problem to effectively balance safety with
using the desired control input. We outline the strengths
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TABLE 1 Overview of safety filter literature. This table presents references regarding the historical development,
core results, and recent data-driven research for each of the three safety filter methodologies presented in this
work. While it is not a complete description of all related work on these methodologies, this collection of works
serves to highlight the strengths of each approach and is a natural starting point for forming a deeper technical
understanding of the results presented in this work.

Hamilton-Jacobi Reachability Control Barrier Functions Predictive Filters
Historical Development [7], [25]–[29] [11], [30]–[32] [13], [33], [34]
Core Results [9], [10], [35], [36] [12], [37]–[40] [14], [41]–[43]
Data-driven Safety Filters [22], [44], [45] [24], [46]–[54] [55]–[60]

and weaknesses of each method and apply them to a
simple example problem for comparison in "Safety Filter
Design Example". We conclude this section by highlighting
recent research focused on combining the aforementioned
techniques in an effort to overcome the limitations facing
each method.

Set Invariance
Set invariance [8] is a well-established notion for studying
whether the state of a dynamic system is contained in a
prescribed set for all time, and is thereby instrumental in
synthesizing safety filters. Given a feedback controller κ :
Rnx ×Rnu → Rnu , we may construct a closed-loop system

ẋ = f (x, κ(x, udes(t))) t ∈ R≥0, (5)

allowing the following definition:

Definition 1 (Set Invariance)
A set S ⊂ Rnx is said to be (forward) invariant for the
system (5) if for any initial condition x0 ∈ S , we have
that x(t) ∈ S for all t ∈ R≥0.

If a set S ⊂ Rnx is forward invariant for the system
(5), and satisfies S ⊆ X , then we may conclude that for
any initial condition x0 ∈ S , we have x(t) ∈ X for all
t ∈ R≥0. Thus, satisfying the state-related part of the safety
constraint (2) can be achieved by constructing a controller
κ and a corresponding forward invariant set S contained in
the state constraint set X . We note that this construction
via invariance requires not only a stronger condition on
the initial condition x0, in that it must lie in S rather than
just X , but it also yields a stronger statement since x(t) ∈
S for all t ∈ R≥0 rather than just x(t) ∈ X . Thus, the
particular construction of the feedback controller κ and the
forward invariant set S impacts the resulting performance
of the system because the use of a conservative set S may
unnecessarily limit the behavior of the system.

The notion of a control invariant set captures the pos-
sibility of controlling the open-loop system (1) in a safe
manner, without being confined to using a predefined
feedback controller κ and then determining a forward
invariant set S for the closed-loop system under κ:

Definition 2 (Controlled Set Invariance)
A set S ⊂ Rnx is said to be control invariant for the
system (1) if for any initial condition x0 ∈ S , there exists
a piecewise-continuous input signal u(·) ∈ PC(R≥0, Rnu )

such that we have x(t) ∈ S for all t ∈ R≥0. If S ⊆ X
contains all initial conditions x0 ∈ X such that there exists
a piecewise continuous input signal u(·) ∈ PC(R≥0, Rnu )

yielding x(t) ∈ X for all t ∈ R≥0, we say that S is the
maximal control invariant set in X for the system (1).

This definition enables various safety-filter design tech-
niques given a control invariant set S . Conversely, since
finding a control invariant set S is not restricted to any
specific controller, choosing S can also be done in a more
constructive manner. The performance achieved using a
safety filter will directly depend on the size of the control
invariant set. Ideally, the set X would be used, however,
this is typically not a control invariant set for (1) and
merely represents the design goal. We will see in the
following subsections that available safety-filter techniques
produce different feedback controllers and (control) invari-
ant sets that permit varying degrees of performance.

Nagumo’s Theorem and Switching Safety Filters
The first safety filter design that we consider is that of a
switching safety filter. Although this design is relatively
simple and often overly conservative, it highlights key
elements that arise in the three advanced safety filter
approaches presented next.

Consider a feedback controller

κS : Rnx → Rnu , (6)

and a set S ⊆ X defined as the 0-superlevel set of a
continuously differentiable function hS : Rnx → R

S = {x ∈ Rnx | hS (x) ≥ 0}, (7a)

int(S) = {x ∈ Rnx | hS (x) > 0}, (7b)

∂S = {x ∈ Rnx | hS (x) = 0}. (7c)

Suppose the set S is forward invariant for the closed-loop
system

ẋ = f (x, κS (x)) (8)

and that κS (x) ∈ U for all x ∈ S . A classic example of
this setting is when κS is a locally stabilizing controller for
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State constraints X ⊂ R2

Safe set S = {x ∈ R2|hS ≥ 0}

f (x(t), κS (x(t)))
f (x(t), udes(t))

x(t)

FIGURE 3 Geometric interpretation of Nagumo’s Theorem. The
switching safety filter (11) builds directly off the condition (10) in
Nagumo’s Theorem to enforce safety. At the state x(t), the desired
input udes(t) will cause the system to leave the safe set S since
the vector f (x(t), udes(t)) points outward with respect to the set S .
Switching to the safe control law (6) as dictated by (11) leads to the
system remaining inside the set since the vector f (x(t), κS (x(t)))
points inward with respect to the set S .

some equilibrium point xe ∈ int(X ) and S is the sublevel-
set of a corresponding Lyapunov function. In this setting,
κS is often synthesized based on a linearization of the
nonlinear dynamics (1) at the equilibrium point xe, and
thus the level of the Lyapunov function must be chosen
relatively small. A small set leads to conservative behavior
of the safety filter, and will motivate later constructions
with Hamilton-Jacobi reachability and predictive safety
filters.

Expressing S as the 0-superlevel set of the continuously
differentiable function hS allows us to consider a funda-
mental result in studying set invariance established in 1942
and known as Nagumo’s Theorem [61]:

Theorem 1
Consider the closed-loop system (8) and a set S ⊆ X
defined as the 0-superlevel set of a continuously differ-
entiable function hS : Rnx → R with int(S) ̸= ∅ and

∇hS (x) ≜
∂hS
∂x

(x) ̸= 0 (9)

for all x ∈ ∂S . Then the set S is forward invariant for (8)
if and only if

ḣS (x) ≜ ∇hS (x)f (x, κS (x)) ≥ 0, (10)

for all x ∈ ∂S .

The requirement (10) of Nagumo’s Theorem has a
simple geometric interpretation as seen in Figure 3. In
particular, the vector given by the closed-loop dynamics
(8) must point into the set S at each point on its boundary.
Moreover, it is a necessary and sufficient condition for
the forward invariance of the set S , implying that the
inequality in (10) is satisfied for all x ∈ ∂S since S is
forward invariant for the closed-loop dynamics (8).

This property on the boundary of the set S allows
the construction of a simple safety filter that switches
between using the desired control input signal udes and

the controller κS . More precisely we construct a safety filter
κF : Rnx ×Rnu → U as

κF(x, udes(t)) =

{
κS (x), x ∈ ∂S or udes(t) /∈ U ,

udes(t), else.
(11)

Such a switching-based safety mechanism was originally
proposed in [62]. It is straightforward to see that

∇hS (x)f (x, κF(x, udes(t))) ≥ 0, (12)

for all x ∈ ∂S by virtue of κS satisfying (10) for all x ∈ ∂S .
Thus we may conclude that S is forward invariant using
the proposed safety filter by Nagumo’s Theorem.

We note that the form of the safety filter (11) is
not entirely rigorous because instantaneous switches at
the boundary of the system may not yield a piecewise-
continuous input signal if the switches occur infinitely
often in a finite period of time (commonly known as Zeno
behavior). This issue can be resolved both theoretically
and practically by requiring the controller κS to be used
for a short time interval when activated. The choice of
this time interval has practical consequences, since short
intervals can yield undesirable chattering behavior, while
large intervals can lead to the safety filter rarely using
the desired control input signal udes(·). The main benefit
of constructing the switching-based safety filter (11) is
its simplicity of implementation whenever access to a
controller κS and a corresponding forward invariant set
S is available.

Hamilton-Jacobi Reachability Analysis for Safe
Set Synthesis
In this section we seek to reduce the conservativeness of
the preceding switching safety filter design by construc-
tively synthesizing the maximal control invariant set S
in X . We will achieve this through the use of Hamilton-
Jacobi (HJ) reachability [10]. The notion of the maximal
control invariant set in X was first developed in the
context of viability theory [7], resulting in the definition
of sets known as viability kernels introduced below. The
first efforts in characterizing viability kernels were led by
the viability theory community [7], with a focus on char-
acterizing the sets geometrically. The connections between
viability kernels and reachable sets were then established
[29], leading to the development of effective computa-
tional frameworks [9], [35] for discovering viability kernels
through dynamic programming-based algorithms [25]. In
this article, we focus on the category of reachability and
viability concepts related to the problem of state constraint
satisfaction. However, it must be noted that reachability
analysis captures a broad collection of set-based concepts
relevant for system verification, such as reach-avoid sets
[36], and has been extended to hybrid systems [27], [28],
[63]. The application of HJ reachability to verify safety
of autonomous aerial and mobile vehicles is detailed in
“Hamilton-Jacobi Reachability Safety Filter Applications”.
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We now present the definition of viability kernels:

Definition 3 (Viability Kernel)
Given a state constraint set X and a time horizon T ∈ R≥0,
we define the viability kernel of X as

VKT(X ) = {x0 ∈ X | there exists u(·) ∈ PC(R≥0,U )
s.t. x(t) ∈ X for all t ∈ [0, T]}. (13)

The viability kernel captures all initial conditions x0 in
the set X for which it is possible to choose a feasible input
signal u(·) that ensures the closed-loop system remains
within the set X over the time horizon T. Naturally, we can
extend this idea to an infinite horizon by requiring the state
to remain in X for all time, yielding a set VK∞(X ) ⊆ X
which is by definition the maximal control invariant set in
X for which it is possible to satisfy input constraints.

The connections between viability kernels and reach-
able sets (to be defined) allow the computation of the
viability kernel to be posed as an optimal control problem
[29]. To see this, let sX : Rnx → R denote the signed-
distance function for the set X (see Notation at the be-
ginning of this article). The satisfaction of state constraints
requires that sX (x(t)) ≤ 0 for all t ∈ R≥0. Equivalently, we
may consider a cost functional J : Rnx ×PC(R≥0,U )→ R

defined as

J(x0, u(·)) = inf
t∈R≥0

−sX (x(t)), (14)

where the state constraints are satisfied if and only if
J(x0, u(·)) ≥ 0. This cost functional enables us to define
a value function V : Rnx → R as

V(x0) = sup
u(·)∈PC(R≥0,U )

J(x0, u(·)). (15)

The value function defines an optimal control problem
with the objective of maximizing (14) across all feasi-
ble control input signals, ultimately to ensure it is non-
negative and thereby implying the satisfaction of state
and input constraints. This value function captures several
core concepts for the reachability-based safety filter design.
First, it serves as a metric for quantifying safety margins,
with negative values indicating violation of safety at some
point in the future, and with larger positive values of the
value function reflecting more margin (because it is possi-
ble to keep the system’s state further from the boundary of
X through control), as captured in the following result [22]:

Theorem 2
For any ϵ ∈ R≥0, we have that the ϵ-superlevel set of the
value function V : Rnx → R defined in (15), denoted as

Sϵ = {x ∈ X | V(x) ≥ ϵ}, (16)

is a control invariant set for (1), and S0 is the maximal con-
trol invariant set in X for (1). Moreover, if V is differentiable

and U is compact, for all x ∈ S0 we have that

max
u∈U
∇V(x)f (x, u) ≥ 0. (17)

The preceding theorem establishes that we can con-
struct the maximal control invariant set in X for (1),
S0, through the value function V. The complement of
this set captures all the states from which the system
will inevitably reach the set X c (the complement of X )
regardless of the choice of control, thereby violating state
constraints. This establishes the connection between the
viability kernel of X and the backward reachable tube of
the set X c as

S0 = VK∞(X ) = (BRT ∞(X c))c , (18)

where the (minimal) backward reachable tube BRT of a
set C ⊂ Rn is defined as

BRT T(C) = {x0 ∈ Rn | for all u(·) ∈ PC(R≥0,U ), (19)

there exists t ∈ [0, T] s.t. x(t) ∈ C}.
Thus, the boundary of the maximal control invariant set
S0, which is characterized by the 0-level set of V, discrim-
inates the region of the state space in which violating safety
is inevitable from the region in which satisfying the safety
constraints is feasible. In practice, using a control invariant
set for (1) smaller than S0, which can be produced by
considering ϵ-superlevel sets of V as noted in Theorem 2,
provides a tunable buffer for accommodating errors when
V is numerically approximated.

The value function can also be used to synthesize a
control policy which can be directly incorporated into the
safety filter design. If the value function V is differentiable,
we can construct an optimal safe policy κ∗V : Rnx → U
satisfying

∇V(x)f (x, κ∗V(x)) = max
u∈U
∇V(x)f (x, u). (20)

By construction, we have that

V̇(x) = ∇V(x)f (x, κ∗V(x)) ≥ 0, (21)

from (17). We note that if for some ϵ ∈ R≥0 we have
that ∇V(x) ̸= 0 for all x ∈ ∂Sϵ, this condition coincides
with the necessary and sufficient condition of Nagumo’s
Theorem for the set Sϵ to be forward invariant under the
control law κ∗V .

Similarly to the switching safety filter in (11), given a
desired ϵ ∈ R≥0 we can design a switching safety filter
based on the value of V(x(t)),

κF(x, udes(t)) =

{
κ∗V(x), V(x) ≤ ϵ or udes(t) /∈ U
udes(t), else.

(22)

If we take ϵ = 0, this safety filter is least restrictive [28], [64]
in the sense that the filter only intervenes at the boundary
of the (approximate) maximal control invariant set in X .
As before, it is necessary to use the controller κ∗V for a
short period of time when it is activated to avoid rapid
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switching, though this controller often practically displays
less chattering than the naive switching safety filter (11).

Computing the value function V is the main task in
constructing the safety filter (22), since it determines the
ϵ-superlevel sets Sϵ and the optimal safe policy κ∗V . The
value function can be characterized as a solution of a
Hamilton-Jacobi Variational Inequality (HJ-VI)

0 = min
{
− sX (x)−V(x), max

u∈U
∇V(x)f (x, u)

}
, (23)

that can be derived from the dynamic programming prin-
ciple [36]. The HJ-VI (23) does not necessarily admit
unique solutions. In practice the existence of a unique
solution can be ensured by using a discounted formulation
of the HJ-VI [65], [66], or using a finite-horizon value
function (replacing the time horizon in (14) with [0, T])
which approximates V for sufficiently large T ∈ R>0 [22].
Furthermore, if V defined as in (15) is not differentiable,
it is still the viscosity solution of (23), which is a standard
type of weak solution for partial differential equations
not necessarily possessing a differentiable solution [67].
In the presence of such non-differentiability, the optimal
safe policy κ∗V can be constructed using the notion of sub-
and super-differentials [26, Ch. III.3.4]. We note that under
mild assumptions on the dynamics (1) and the signed
distance function sX , the discounted and finite-horizon
value function used to approximate the infinite-time value
function are almost everywhere differentiable, implying
the applicability of κ∗V satisfying (20).

Algorithms for numerically computing the value func-
tion have been well developed [68], primarily through
the notion of viscosity solutions [26], [67] and level-set
methods for solving partial differential equations [69].
These algorithms typically rely upon forming a grid on
the set X and evaluating the value function, its gradient,
and the Hamiltonian (the left-hand side of (17)) at each
grid point. Consequently, these approaches face challenges
with problems possessing high-dimensional state spaces, a
traditional challenge in dynamic programming known as
the ”curse of dimensionality" [25]. Recent research efforts
have attempted to alleviate this challenge by using state
decompositions [70], warm starting [71], approximating so-
lutions with neural networks [72], or learning through re-
inforcement learning [73]. Other works attempt to compute
the maximal control invariant set approximately without
relying on the HJ reachability formulation through sums-
of-squares programming [74], [75], or polytopes [76], ellip-
soids [77] and zonotopes [78], [79]-based set operations.

Similarly to the switching safety filter in (11), the
reachability-based safety filter in (22) relies on instan-
taneously switching the control input from udes(t) to
κ∗V(x(t)) when the system encounters the boundary of
Sϵ. This switching mechanism is often vulnerable to dis-
turbances affecting the system dynamics (1). The instan-

taneous jumps in the control input can also produce
chattering which is infeasible on real-world systems due
to actuator dynamics and wear. Reachability theory may
be extended to incorporate disturbances, resulting in an
invariant set Sϵ that is robust to disturbances [35], [36].
Additionally, the transition from udes(t) to κ∗V(x) in (22) as
V(x) approaches ϵ can be moderated in a smooth manner
by blending the two control input values.

Safety Filters using Control Barrier Functions
Control barrier functions (CBFs) provide an alternative
framework for constructing safety filters based on the
comparison principle, a fundamental idea in the study
of nonlinear systems [80]. Through this approach it is
possible to construct safety filters that smoothly modify
a desired input control signal as the boundary of a set is
approached, rather than switching to a safe controller only
at the boundary. Moreover, the shared use of the com-
parison principle establishes deep connections between
CBFs and Lyapunov functions, allowing a large set of tools
developed in the context of stabilization to be adapted for
the goal of achieving set invariance.

Historically, barrier methods were first developed in
the context of constrained optimization [81], wherein con-
straint satisfaction could be achieved through increasingly
large penalties on constraint violation. The idea to use
barrier certificates in the context of nonlinear dynamical
systems was first proposed in [30] for certifying the for-
ward invariance of a set for a closed-loop system. This
result was further developed in [11], yielding the first
definition of CBFs as a tool for simultaneously synthe-
sizing a safety-critical controller and a barrier certificate
for the corresponding closed-loop system. The controller
presented in this work was based on a structured design
developed with control Lyapunov functions for stabiliza-
tion in [82]. A consequence of this structured design was
that the controller could not accommodate a desired con-
trol input signal that focused on performance instead of
safety, making it unamenable for use as a safety filter.

A change to the formulation of CBFs that increased their
potential for use as safety filters was proposed in [32].
The first component of this change was incorporating an
extended class K function into the CBF time derivative
condition required for safety. This change allowed the
system state to approach the boundary of the safe set as
long as it displayed a safe degree of "braking", reducing
the conservative nature of the original definition of CBFs.
The second component of this change was realizing that
for control-affine systems, the CBF time derivative was
affine in the control input, and thus could be directly
incorporated as a constraint in a convex optimization
problem. This resulted in a way to optimally filter a desired
control input signal while meeting safety constraints.

We now review this formulation of CBFs as presented
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in [12]. We study a broad subset of the class of systems
described by (1) in the form of a control-affine nonlinear
system

ẋ = f (x) + g(x)u, (24)

making similar assumptions on differentiability and the
existence and uniqueness of solutions as made for (1).
Given a feedback controller κ : Rnx ×Rnu → Rnu , we may
construct a closed-loop system

ẋ = f (x) + g(x)κ(x, udes(t)), (25)

for which we have the following definition:

Definition 4 (Barrier Function)
Let S ⊆ X be defined as the 0-superlevel set of a contin-
uously differentiable function hS : Rnx → R. The function
hS is a barrier function (BF) for (25) on S if there exists
α ∈ Ke such that for any x ∈ Rnx , we have that

ḣS (x, t) ≜ ∇hS (x)(f (x) + g(x)κ(x, udes(t))) ≥ −α(hS (x)).
(26)

The following theorem is proven through comparison
principles (as opposed to the boundary conditions seen
in Nagumo’s theorem), and establishes how a barrier
function serves as a certificate of set invariance [38]:

Theorem 3
Let S ⊂ X be defined as the 0-superlevel set of a contin-
uously differentiable function hS : Rnx → R. If hS is a BF
for (25) on S , then the set S is forward invariant for the
system (25).

This theorem states that if the closed-loop dynamics
(25) satisfy the inequality in (26) at each point in the state
space, the set S is forward invariant for (25). We observe
two notable properties of the requirement in (26). The first
property is that the time derivative of hS must be lower
bounded by a quantity that increases as hS gets smaller.
This induces a “braking" effect on the system, where it may
not approach the boundary of S too quickly. The second
property is that the time derivative of hS must be positive
outside of the set S . This induces a type of asymptotic
stability of the set S , and plays a fundamental role in
CBF safety filters robustness to disturbances and model
uncertainty [39].

As previously discussed, it is often easier to synthesize
a safety filter given a control invariant set, rather than
constructing a forward invariant set given a feedback
controller. To this end, we define the notion of CBFs:

Definition 5 (Control Barrier Function)
Let S ⊆ X be defined as the 0-superlevel set of a contin-
uously differentiable function hS : Rnx → R. The function
hS is a control barrier function (CBF) for (24) on S if there

exists α ∈ Ke such that for any x ∈ Rnx , we have that

sup
u∈U
∇hS (x)(f (x) + g(x)u) > −α(hS (x)). (27)

The strict inequality in this constraint is critical for
proving regularity properties such as Lipschitz continuity
of resulting controller designs [40]. Given a CBF for (24)
on S , we can define a pointwise set

KCBF(x) = {u ∈ U | ∇hS (x)(f (x) + g(x)u) ≥ −α(hS (x))},
(28)

and state the following result regarding the connection
between a CBF and a BF:

Theorem 4
Let S ⊂ X be defined as the 0-superlevel set of a con-
tinuously differentiable function hS : Rnx → R. If hS is a
CBF for (25) on S , then the set KCBF(x) is non-empty for all
x ∈ Rnx , and for any locally Lipschitz continuous controller
κ : Rnx → Rnu with κ(x) ∈ KCBF(x) for all x ∈ Rnx , the
function hS is a BF for (25) on S .

Given this result, we may directly use a CBF to syn-
thesize a safety filter through the convex optimization
problem

κF(x, udes(t)) = argmin
u∈U

1
2
∥u− udes(t)∥2

2 (29)

s.t. ∇hS (x)(f (x) + g(x)u) ≥ −α(hS (x)).

This controller is a convex quadratic program that
may be efficiently solved. By construction it satisfies
κF(x, udes(t)) ∈ KCBF(x) for all x ∈ Rnx , such that the
conditions of Theorem 4 are met, and thus by Theorem 3
we can conclude the set S is forward invariant for (25).
Moreover, it allows the desired input signal udes(·) to be
minimally modified, such that udes(t) is not used only
when it is unsafe, and the input u(t) actually used is as
close as possible to udes(t).

The preceding controller has been deployed in sev-
eral experimental contexts, including mobile robots [83],
robotic swarms [84], aerial vehicles [85], robotic arms [86],
robotic manipulators [87], quadrupedal robots [88], bipedal
robots [50], and automotive systems [89]. A more detailed
overview of some of these applications can be found
in "Control Barrier Function Safety Filter Applications".
This collection of successful practical applications indicate
that CBFs are a powerful tool for safety filter design for
complex, high-dimensional nonlinear systems.

Despite these successes, there remain challenges and
limitations facing CBF-based safety filters. A key chal-
lenge lies in constructively synthesizing CBFs and ver-
ifying that the condition in (27) can be met over the
state space (or over some limited part of the state space),
especially with bounded inputs. For relatively simple sys-
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tems it is often possible to check this condition analyti-
cally, but it can be difficult to verify for more complex
high-dimensional systems. Recent attempts to solve this
challenge have considered numerical optimization-based
approaches through sums-of-squares programming [90],
[91], using reduced-order models coupled with approaches
for handling the full-order system dynamics [92], [93], or
learning CBFs from data [94]. Still, well-established and
principled methodologies for finding CBFs remains an
open research question.

A further limitation of CBFs is their myopic approach
for approximating the ideal safety filter in (4). In particular,
the safety filter in (29) modifies the desired input signal
udes(·) to minimize an instantaneous deviation, rather than
minimizing the total deviation over a time horizon. This
can lead to sub-optimal closed-loop behavior because the
CBF safety filter considers how the chosen input will
impact the system in the future only as captured by an in-
stantaneous derivative condition. Recovering performance
over a time horizon while achieving safety motivates
studying predictive safety filters that plan inputs over a
time horizon, as presented next.

Predictive Safety Filters
The previously discussed safety filter methods rely on an
explicit characterization of the safe set. The underlying
computations are typically limited in scalability as in the
case of HJ reachability, or are myopic in nature as with
CBF-based methods. Recent concepts such as active set
methods [41], SHERPA [42], model predictive safety cer-
tification (MPSC) [14], predictive safety filters (PSF) [55],
and predictive shielding [43] aim at addressing this chal-
lenge and provide a trade-off between scalability and
performance by a just-in-time computation of predictive
backup plans. We specifically focus on predictive safety
filters (PSFs) [14], [55] in the following due to their close
relation with (data-driven) model predictive control liter-
ature [23], [60], [95]. This connection provides PSFs with
an extensive theoretical background covering a variety of
system model classes with uncertainties and data-driven
estimates, and efficient computational tool sets for their
implementation [13].

PSFs are based on the idea of extending a potentially
conservative control invariant terminal safe set S t using
predictive backup plans. More precisely, for a time t0 ∈
R≥0, consider the system state x(t0) and the desired input
udes(t0). Letting T ∈ R>0 be a prediction horizon, the
safety of the desired input udes(t0) is certified by searching
for a state trajectory x(·) ∈ C([t0, t0 + T],X ) and an input
signal u(·) ∈ PC([t0, t0 + T],U ) satisfying the system
dynamics (1) and the boundary conditions x(t0) = x(t0),
x(t0 + T) ∈ S t, and u(t0) = udes(t0). If such a state
trajectory and input signal exists, it is possible to use the
desired control input and bring the system from the state

X
S t

x(k)

x2|k−1

x3|k−1

x4|k−1

f(x(k), udes(k)) = x1|k
x2|kx3|k

x4|k

FIGURE 4 Mechanism of predictive safety filters. The current
system state x(k) is shown with a safe backup plan (brown)
from the solution at time k − 1. A desired input signal udes(k) is
passed through unfiltered if a feasible backup trajectory (green)
can be obtained from the resulting f(x(k), udes(k)) via optimization
problem (31).

x(t0) into the set S t within the finite prediction horizon T,
while respecting state and input constraints. If the desired
input udes(t0) can not be certified as safe, a safe control
input is chosen for which the system can be brought to
the terminal safe set S t.

We note that because the PSF is implemented with a
receding horizon, the actual evolution of the system is not
required to follow the backup plan into the terminal safe
set S t. Rather, the system will evolve using the input at
the beginning of the predictive horizon (which must be
consistent with a backup plan that returns to St further in
the horizon), after which it will compute a new backup
plan. In this way, the system is allowed to freely evolve
according to udes(·), and does not need to actually return
to S t, as long as it remains possible to return to S t in
the future, see Figure 4 for an illustration. Consequently,
the set kept forward invariant is implicitly defined by the
feasible set of the resulting predictive control problem and
thereby by the PSF parameters and terminal safe set S t,
rather than explicitly represented as the superlevel set of
a function.

Implementing a PSF requires solving a predictive con-
trol problem online. While efficient solvers are avail-
able [13], they require a non-negligible evaluation time
period compared with CBF or HJ reachability-based safety
filters. During an evaluation time period ∆T ∈ R>0,
the previous input is typically held constant, result-
ing in zero-order-hold input signals, that is, u(t) =

κF(x(k∆T), udes(k∆T)) for all t ∈ [k∆T, (k + 1)∆T), where
k ∈ N denotes the corresponding sampling time step.
Applying a standard Euler discretization to (1) yields an
approximate discrete-time, zero-order hold formulation of
the continuous-time system model (1)

x(k + 1) = x(k) + ∆Tf (x(k), u(k)) = f(x(k), u(k)). (30)

Let N be the discrete-time prediction horizon. At the
sampling time step k the construction of a safe backup
trajectory {xi|k} for i = 1, . . . , N toward the terminal safe
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set S t is formulated as

min
ui|k

∥udes(k)− u0|k∥ (31a)

s.t. xi+1|k = f(xi|k , ui|k), (31b)

x0|k = x(k), (31c)

xi|k ∈ X , for i = 0, ..., N − 1, (31d)

xN|k ∈ S t, (31e)

ui|k ∈ U , for i = 0, ..., N − 1, (31f)

where i|k denotes planned states and inputs computed
at time step k predicted i time steps into the future that
satisfy the dynamic constraint (31b). An illustration of this
planned sequence of states can be seen in Figure 4. The
remaining constraints (31c)-(31f) ensure that backup plans
lead the system into a safe terminal controlled invariant
set S t ((31e) is referred to as the terminal constraint in
model predictive control [13]) while satisfying the state
and input constraints. The following assumption on the
terminal safe set S t ensures this optimization problem
yields a safe input:

Assumption 1 (Terminal Control Invariant Set)
Consider the system (30). There exists a terminal set S t ⊆
X such that for all x ∈ S t, there exists an input u ∈ U such
that f(x, u) ∈ S t.

Assumption 1 establishes that the terminal set S t

is a discrete-time control invariant set, similar to the
continuous-time version in Definition 2 and thereby en-
sures safety for all times. A trivial choice for S t is any
equilibrium point xe = f(xe, ue) satisfying xe ∈ X and
ue ∈ U . Methods for computing less restrictive terminal
sets satisfying Assumption 1 can be obtained through
discrete-time control barrier function design [18], [96] or
can be computed as invariant sets under a local control
law [13, Section 2.5.3.2], [97]. We provide a corresponding
design procedure in the next section.

The resulting PSF for the discrete-time system (30) is
then given by κF(x(k), udes(k)) = u∗0|k with u∗0|k being
the first element of the optimal backup control sequence
obtained from (31). The formal closed-loop safety guaran-
tee under application of u(k) = κF(x(k), udes(k)) follows
from an induction argument. In particular, assume that (31)
was feasible at time k− 1 with the corresponding optimal
input sequence {u∗i|k−1}. Under application of u(k − 1) =
κF(x(k− 1), udes(k− 1)) = u∗0|k−1, the system evolves to the
state x(k) = x∗1|k−1. Because the terminal set is a control in-
variant set, we can construct a feasible candidate sequence
at time step k given by {u∗1|k−1, u∗2|k−1, .., u∗N−1|k−1, ū} with
ū ∈ U such that f(x∗N−1|k−1, ū) ∈ S t, thereby satisfying
all constraints in (31). By induction, we may conclude
feasibility of (31), and consequently, satisfaction of state
and input constraints due to (31d) and (31f), if (31) is

initially feasible at k = 0. This result also implies that the
set of feasible initial conditions

SPSF
N = {x(k) ∈ Rnx |(31b)− (31f)}, (32)

implicitly defines a control invariant set.
Similar to (29), the objective (31a) implements the

desired safety filter property, that is, it minimizes the
deviation between the first element of the input backup
sequence u0|k and the desired input udes(k), such that
u0|k = udes(k) if udes(k) is safe. Conceptually, the PSF
design can further be improved in terms of approximating
the desired safety filter formulation (4) by adding future
deviations ∑N−1

i=0 ∥ui|k −udes(k + i)∥ to the objective (31a) if
udes is a known open-loop signal or policy. Furthermore,
if a task-specific performance metric ℓ(x, u) is available,
replacing (31a) with ∑N−1

i=0 ℓ(xi|k , ui|k) recovers standard
model predictive control formulations and directly approx-
imates the underlying optimal control problem [13].

While PSFs provide a flexible framework for approx-
imately optimal safety filtering and approximate optimal
control, the central challenge is to solve (31) reliably in real-
time. This is addressed theoretically and through software
tools [13, Section 8] and is a central part of ongoing model
predictive control research.

Nominal Terminal Invariant Set Design (Assumption 1):
We now detail a procedure for designing a terminal in-
variant set S t according to Assumption 1 following [97].
Assume that the dynamics (1) are twice continuously
differentiable and that there exists an equilibrium point
at the origin such that f(0, 0) = 0, with 0 ∈ int(X ) and 0 ∈
int(U ). We consider polytopic state and input constraints
X = {x ∈ Rnx |Axx ≤ bx} and U = {u ∈ Rnu |Auu ≤ bu}
and parameterize the terminal invariant set as an ellip-
soidal set S t

γ = {x ∈ Rnx |γ− x⊤Px ≥ 0} with γ ∈ (0, 1].
The design procedure considers the linearization of (30)
around the origin, denoted by A = (∂/∂x)f(x)|(0,0), B =

(∂/∂u)f(x, u)|(0,0), and higher-order error terms r(x, u) =

f(x, u)−Ax− Bu. Assume that K ∈ Rm×n renders A− BK
Schur stable. The forward invariance of S t

γ under u = −Kx
can be imposed through the sufficient Lyapunov condition

(AKx + rK(x))⊤P(Ak + rK(x))− x⊤Px ≤ 0, (33)

where AK = (A − BK) and rK(x) = f(x,−Kx) − AKx.
Splitting the linear and nonlinear terms in (33) yields

xT(A⊤K PAK − P)x + rK(x)⊤PrK(x) + 2x⊤A⊤K PrK(x) ≤ 0.
(34)

Since the term rK(x) is higher-order, for a value c ∈ (0, 1)
we have that

rK(x)⊤PrK(x) + 2x⊤A⊤K PrK(x)− cx⊤Px︸ ︷︷ ︸
=R(x)

≤ 0, (35)

locally around the origin. This allows the separation of
the requirement (34) into the requirement R(x) ≤ 0 and
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the matrix inequality requirement

A⊤K PAK − (1− c)P ⪯ 0. (36)

We first compute P satisfying (36), S t
1 ⊂ X , and KS t

1 ⊂ U .
Because R(x) satisfies (35) locally about the origin, we then
ensure (34) is met for the nonlinear system by iteratively
reducing γ from a value of 1 until maxx∈S t

γ
R(x) ≤ 0.

The search for a large terminal safe set S t based on the
linearized system is typically formulated as a convex opti-
mization problem [98, Section 2.4.1], [97]. This design pro-
cedure can be applied on high-dimensional systems [99]
and is demonstrated in the "Safety Filter Design Example"
sidebar. It should be noted that the permissiveness of a
PSF is typically governed by the size of the implicit safe
set (32) and therefore depends on the size of the terminal
safe set S t. As a result, various research directions have
investigated efficient ways to extend terminal safe sets
online using previous solutions of (31) [100], [101].

Practical Considerations
A practical challenge when implementing a PSF arises if
disturbances drive the plant into a state for which the prob-
lem (31) is infeasible and no safe control input can be com-
puted. A systematic method for dealing with infeasibility
is to “soften” the constraints by including slack variables
into the problem, as commonly done in model predictive
control [102]. For instance, when the state and terminal
constraints can be described by X = {x ∈ Rnx |aX (x) ≤ 0}
and S t = {x ∈ Rnx |aS t

(x) ≤ 0} for some functions aX , aS
t

respectively, the soft constrained reformulation of the PSF
problem (31) is

min
ui|k ,ξi|k

∥udes(k)− u0|k∥+
N

∑
i=0

lξ(ξi|k) (37)

s.t. (31b),(31c), (31f),

ξi|k ≥ 0, for i = 0, ..., N,

aX (xi|k) ≤ ξi|k , for i = 0, ..., N − 1,

aS
t
(xN|k) ≤ ξN|k .

The non-negative slack variables {ξi|k} ensure feasibility
for any x(k) and any input sequence ui|k ∈ U . The
corresponding penalty function lξ can, for example, be
selected as lξ(ξ) = ∥ξ∥2 + ρξ∥ξ∥, where ρξ is a positive
constant. The goal is to select ρξ large enough such that
the second term in (37) admits an exact penalty function,
implying that the slack variables are only non-zero if con-
straint satisfaction of the corresponding constraints is not
possible. If the original, hard-constrained problem (31) is
feasible, the soft-constrained problem should produce the
same control input [102]. It should be noted that the slack
variables are, however, not guaranteed to vanish in closed-
loop, that is the system may not return to the implicit
safe set defined by (31). Current research efforts in model
predictive control [103], [104] and predictive safety filters

[19] investigate such cases, for example, by connecting PSF
and CBF theory [19], see also the discussion below.

Discussion
In this section we provide a brief overview of the relation-
ship between HJ reachability, CBFs, and PSFs, with a focus
on recent works at the intersection of the approaches.

Hamilton-Jacobi Reachability + Control Barrier Functions
Both the methods of HJ reachability and CBFs are built
on determining an explicit representation of a control
invariant set, typically through the superlevel sets of a
continuous scalar function. This similarity leads to con-
nections between the two approaches, both theoretically
and in practical behavior. Moreover, the combination of
these approaches is complementary since HJ reachability
can increase the size of a control invariant set used in a
safety filter, while CBFs provide a succinct approach for
smoothly filtering a desired input signal.

The use of viability kernels in the construction of CBFs
was first explored in [105], in which smooth polynomial
approximations of the viability kernel were constructed via
sums-of-squares programming and used as a CBF. This
type of numerical approach enabled for a large control
invariant set while preserving the smoothness properties
needed by CBFs. The work in [15] conducts a comparative
study of the control invariant sets found using HJ reach-
ability and backup CBF methods (discussed more below
in the paragraph on CBFs and PSFs). This work finds
that given an adequately designed backup controller and
backup set, the control invariant sets found with backup
CBF approaches closely approximate the maximal control
invariant sets found through HJ reachability.

Other recent work has looked at how elements from
CBF-based safety filters can be directly incorporated into
Hamilton-Jacobi reachability computations. The work in
[16] integrates the comparison function seen in CBF-based
safety filters into the HJ-VI (23) that is solved numerically,
allowing for the synthesis of CBFs through the tool sets
typically used in HJ reachability. In this new reachability
formulation, the minimum norm safety filter (29) based on
the resulting value function is verified to be the optimal
policy of the value function. This allows the reachability
community to expand their choice of the safety filters from
the primary switching safety filter (22) to those in the
CBF community which have better practical behaviors.
The work in [106] integrates with this previous work
by making use of the ability to warm-start the process
of numerically solving the HJ-VI (23) to use dynamic
programming to iteratively update a CBF candidate until
it converges to a valid CBF. Though these approaches
benefit from the strengths of both HJ reachability and
CBFs, their numerical approach still faces challenges with
high-dimensional systems. Other recent work has sought
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Hamilton-Jacobi Reachability

Pros Cons

• Maximal safe set
• Safety certification of systems

• Curse of dimensionality
• Indirect synthesis of filter

Control Barrier Functions

Pros Cons

• Ease of implementation
• Smooth safety filtering

• CBF synthesis
• Myopic filtering

Predictive Control

Pros Cons

• Scalable to large-scale systems
• Approximate optimality of (4)

• Complexity of robust design
• Heavy online computation

CBF→HJ: Smooth filtering [16]
CBF←HJ: Maximal safe set [105]

CBF↔HJ: Explicit safe sets

PSF→CBF: Enlarged safe set [41]
PSF←CBF: Robustness [19]

PSF↔CBF: Smooth filtering

HJ→PSF: Maximal safe set [17]
HJ←PSF: Predictive filtering

HJ↔PSF: Optimal control based

FIGURE 5 Key advantages and drawbacks of Hamilton-Jacobi reachability, control barrier functions, and predictive safety filters. The
relationship between them is outlined (↔) and how techniques enhance each other, for example, CBF techniques can be used to improve
HJ safety filters (CBF→HJ).

to alleviate these challenges by using learning to construct
CBFs [107], [108].

Beyond finding efficient approaches for tackling the
curse of dimensionality in this context, an open research
direction at this intersection focuses on rigorously study-
ing the regularity properties of CBFs constructed through
reachability frameworks. Such an effort would rigorously
codify the regularity properties achieved by weak viscosity
solutions to the HJ-VI, and develop similarly rigorous
results connecting the resulting CBFs and safety in the face
of these regularity limitations, similarly to those in [109].

Hamilton-Jacobi Reachability + Predictive Safety Filters
While both HJ Reachability and PSFs aim to ensure
safety through an optimal control problem formulation,
there are differences in their respective problem structures
and corresponding algorithms. First, HJ reachability incor-
porates safety constraints through an appropriate value
function (15), whereas PSFs consider them as part of a
constrained optimization problem (31d). As a result, HJ
reachability-based safety filters decouple safe set synthesis
and filter design, while PSFs implicitly capture a safe set
and filter inputs through a single optimization problem.

Second, HJ reachability uses the machinery of dynamic
programming [110] to find an optimal solution offline for
all states. Typically, the value function (15) is explicitly
computed as the solution of a HJ partial differential equa-
tion, which can be done for a class of optimal control
problems [26] including both reachability formulations and
state-constrained general-cost problems [111]. The compu-
tation of the value function globally for all states faces the
curse of dimensionality. In return, it explicitly characterizes
the maximal control invariant set in X before deploying

the controller, allowing for controller verification when
employed on safety-critical systems [9].

In contrast, PSFs leverage online optimization to ap-
proximately solve a state-constrained optimal control prob-
lem (31) using only the current state and a receding hori-
zon principle [13]. The approximate nature of solving the
state-constrained optimal control problem originates from
two sources. First, the predictive time horizon is only finite
and typically much shorter than the actual horizon over
which safety is required. In order to still guarantee safety
over the entire horizon, PSFs employ the terminal safe set
constraint (31e) at the end of the horizon, restricting the
degrees of freedom of the filter.

Second, a PSF solves the open-loop optimal control
problem (31) in a receding horizon fashion, that is, at
every time step based on the current state. Solving the
optimal control problem (31) online avoids requiring an ex-
plicit pre-computation of an optimal control policy, thereby
circumventing the curse of dimensionality. Instead, PSFs
require efficient nonlinear programming solvers working
in real-time with significant system processing power. If
sufficient computation power is available online, PSFs
can provide a near-optimal safety filter even for high-
dimensional systems. Additionally, evaluating whether the
system will be safe given an initial state can only be veri-
fied by evaluating feasibility of the optimization problem
(31). Thus, an explicit representation of the safe set is not
available, but rather an implicit representation defined by
feasibility of the optimization problem (31).

Despite these differences between the two approaches,
there are similarities between the approaches that suggest
the potential for integrating them. In particular, the implicit
safe set defined by a PSF using a sufficiently long planning
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horizon coincides with the explicit safe set (viability ker-
nel) from HJ reachability. This effect is demonstrated in
”Safety Filter Design Example". Finally, recent approaches
are exploring various ways of exploiting the benefits of
both methods, see for example, [17], where condition (21)
from HJ reachability is incorporated as a constraint in a
predictive controller.

Control Barrier Functions + Predictive Safety Filters
Control barrier functions and predictive safety filter tech-
niques naturally complement each other in a way that
reduces the weakness of each individual method. The pre-
dictive horizon present in predictive safety filters can help
to reduce poor closed-loop behavior induced by the my-
opic nature of a CBF-based safety filter. This improvement
comes with the burden of solving a nonlinear optimization
problem in real-time, which substantially increases the
complexity of the safety filter design and implementation
compared to CBF-based filters. Furthermore, predictive
safety filters do not provide intrinsic robustness properties,
which often result in rather complicated design procedures
to ensure safety despite disturbances.

This complementary relationship has yielded several
recent results integrating the two methods. Integrating CBF
constraints directly into the optimization problem specify-
ing the predictive filter, either as a instantaneous derivative
condition [88], or a decrement condition [18], [112]–[114],
leads to the dynamic “braking" typical of CBFs and often
yields robust behavior. In addition, the use of CBFs as a
terminal constraint can formally render the sum of slack
variables in the predictive safety filter problem (37) into a
‘predictive’ CBF [19]. Further approaches include multirate
architectures, in which a high-level predictive controller
provides a desired input signal that is filtered using a CBF-
based safety filter [20], [88], [115]. These approaches allow
for the complex nonlinear predictive optimization problem
to be solved at slower frequencies since the CBF-based
filter keeps the system close to the planned trajectory at a
high frequency. Other approaches have introduced predic-
tive elements to consider safety along solution trajectories
[116], or used predictive elements for trajectory tracking
and CBFs for obstacle avoidance [117].

The thread of work in [41], [118], [119] focuses on
the notion of backup set methods using CBF-based safety
filters. This approach shares conceptual elements with
predictive safety filters by using a backup set which can
be kept forward invariant with a backup controller to
implicitly define a larger control invariant set. The backup
set methods consider a predictive horizon over which a
CBF constraint must be enforced, ensuring the system
can always reach the backup set. Structural differences
between these backup set approaches and predictive fil-
ters often lead to different approximations for tractably
handling the use of a predictive horizon, suggesting a

distinction between the two methods.

DATA-DRIVEN SAFETY FILTERS
The safety filter techniques developed in the first half of
this article were presented assuming perfect knowledge of
the system dynamics (1). However, in most practical set-
tings, high-fidelity system models are difficult to construct
and systems are subject to external disturbances, which can
lead to loss of safety guarantees. This challenge has been a
topic of significant research interest from the perspective of
data-driven control, in which empirical information about
the unknown system is integrated into various elements
of the safety filter synthesis process. We now present this
problem setting, and a selection of data-driven results
related to HJ reachability, CBFs, and PSFs.

Consider the nonlinear control system

ẋ = ftrue(x, u), (38)

where x ∈ Rnx is the system state, u ∈ Rnu is the control
input, and ftrue : Rnx ×Rnu → Rnx , which for simplicity we
assume to be continuously differentiable in its arguments.
For many systems in engineering, first principles, such
as Lagrangian mechanics or the laws of thermodynamics,
allow for the derivation of simplified model structures to
construct the function f in (1). In many real-world appli-
cations, generating a sufficiently accurate first-principles
model can, however, require significant engineering effort,
or may not even be possible, for instance in biological or
chemical applications, leading to a discrepancy between
the model f and the actual dynamics of the system, given
by ftrue.

We note that this mathematical formulation can de-
scribe parametric uncertainty. Even for systems for which
the structure of f accurately characterizes ftrue, there may
be errors between parameters of the model and parameters
of the actual system. For instance, different cars of the same
vehicle type typically have the same model structure, but
may differ in the model parameters due to manufacturing
tolerances, wear of components, or replacement parts such
as different tire rubbers. Manually identifying parameters
through laboratory testing is often difficult and costly, and
designs that are robust to large parameter uncertainties
are often conservative. Various data-driven techniques spe-
cialized for addressing safety in the face of parametric
uncertainty have been proposed including adaptive control
[120], [121] and Bayesian estimation [122], [123].

This section discusses how to leverage data-driven tech-
niques to improve a model obtained from first principles,
given by (1), to more accurately reflect (38) and presents
selected techniques for using these concepts in the con-
text of safety filters. To this end, consider a sequence of
measured states, inputs, and state time derivatives

D = {(xk , uk , ẋk)}nD
1 ≜ {(x(kTs), u(kTs), ẋ(kTs)}nD

1 , (39)
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at sampling time steps kTs. We note that the state and
state derivative measurements are subject to noise, which
is typically assumed to be contained in a known set or
modeled as an independent and identically distributed
random variable. We also note that data of the form (39)
can equally handle episodic measurements, including mul-
tiple resets of the system state, enabling an iterative model
refinement. While this article mainly focuses on learning
the system dynamics model (38), such a data set could be
used for other elements of the safety filter process such as
learning control invariant sets [94], [107], [108].

Model Uncertainty Decomposition
System modeling by domain experts using physical prin-
ciples is typically the first step of safety filter design and
yields an imperfect nominal model f as in (1). Using this
model, we can rewrite the actual system dynamics (38) as

ẋ = f (x, u) + ftrue(x, u)− f (x, u)︸ ︷︷ ︸
=en(x,u)

, (40)

where the function en : Rnx ×Rnu → Rnx captures all errors
between the system model and the actual system. While
assumptions on the uncertainty of the system may be used
to construct a state and input dependent set En(x, u) such
that en(x, u) ∈ En(x, u), this set often significantly over
approximates the model error, yielding robust designs that
are excessively conservative. Data-driven techniques tackle
this challenge by reducing the model error en to a smaller
learning error, el : Rnx ×Rnu → Rnx using a learning-based
correction term fl : Rnx ×Rnu → Rnx , that is

ẋ = f (x, u) + f l(x, u) + en(x, u)− f l(x, u)︸ ︷︷ ︸
=el(x,u)

. (41)

Learning f l from the data (39) to mitigate el can be
posed as a classical regression problem, which can be
divided into parametric approaches with a fixed number of
parameters independent of the number of measurements
nD, and non-parametric approaches that have a variable
number of parameters that grows with nD. Parametric
approaches are particularly suitable when the structure
ftrue in (38) is well understood and when fast predictions
are required. In contrast, non-parametric approaches can
compensate for both parametric and structural uncertainty
but can be computationally more expensive to use for
prediction. In addition to reducing the model error en,
some learning techniques provide a bound on the residual
learning error el in the form of a state and input dependent
set, such that el(x, u) ∈ E l(x, u). The availability of such a
set and its structure allows for a distinction of data-driven
safety filter approaches as follows [23], [60], [95, Section
II].

Deterministic Models
The first class of approaches consider the integration of
deterministic data-driven models into safety filter design,

without any specific quantification of the residual learning
error el. Such approaches can provide good predictive
performance and are commonly employed in practical
applications. Examples include parametric models with
simple least-squares regression or (recurrent) artificial neu-
ral networks and non-parametric techniques based on k-
nearest-neighbors techniques [124]. Since these approaches
typically do not provide an explicit bound on the resid-
ual learning error, safety according to (2) is practically
achieved using tightened constraints of the form αX , αU
with α ∈ (0, 1) in safety filter design. The resulting safety
margin (1 − α) is then hand-tuned to achieve constraint
satisfaction. Examples include the use of deterministic
models with CBFs [24], [47], [50] (see the examples "Data-
Driven Control Barrier Function Safety Filter Applica-
tions") and soft constrained PSFs [125] (see the miniature
race car example in "Predictive Safety Filter Applications:
Experimental Race Cars and Simulated Quadrotors").

Robust Models
The second class of approaches directly incorporate an
explicit bound on the residual learning error el into the
safety filter design, yielding robust safety filters. As previ-
ously noted, certain data-driven models bound the resid-
ual learning error through a state and input dependent
set, such that el(x, u) ∈ E l(x, u). Safety filter design is done
such that the system in (41) is safe for all possible residual
learning error values in the set E(x, u). Error quantification
for parametric methods often uses regularity properties of
a class of parametric learning models, such as the use
of spectral normalization and Lipschitz constants with
recurrent neural networks [126], [127]. Non-parametric
methods often use assumptions on the actual dynamics of
the system (such as Lipschitz continuity) in conjunction
with data to synthesize robust safety filters [128], [23,
Section 3.1.2]. Such approaches have been taken using HJ
reachability through a differential game formulation [129],
using CBFs through robust optimization [51], [130], and
using PSFs by determining an appropriate constraint tight-
ening mechanism [56].

Probabilistic Models
The preceding robust approaches guarantee safety of a
system, but they can often be unnecessarily conservative
because they must capture all possible residual learning
errors. Moreover, they tend to neglect the fact that the
measurements composing D are noisy, and that resulting
guarantees on learning accuracy are inherently proba-
bilistic. The third class of approaches uses distributional
information about the residual learning error in the safety
filter design process, permitting practical designs that
can balance the need for safety with strong performance.
The corresponding data-driven models typically provide
a data-driven description of the residual learning error
el in the form of a probability distribution, p(el|D). An

14 IEEE CONTROL SYSTEMS » JUNE 2020



overview of parametric and non-parametric probabilistic
regression techniques often used in control can be found
in [95, Section II], [23], [60] and references therein. A
common learning technique to estimate the model error
en in the context of safety is based on Gaussian process
regression [59], [131]–[133].

Though it may be possible to construct probabilistic
descriptions of structural uncertainties, parametric uncer-
tainties, and external disturbances, it can be challenging to
translate these descriptions into a safety filter formulation.
A common simplification is to consider overall safety
guarantees from a probabilistic perspective by considering
robustness at a certain probability level [23, Section 3.2], [58],
[59], [133]–[135]. To this end, we construct a state and input
dependent uncertainty set E l(x, u) based on available data
D (39) similar to the robust case, which is, however, only
valid in probability, such that

Pr


el(x, u) ∈ E l(x, u) for all x ∈ X and u ∈ U︸ ︷︷ ︸

⋆


 ≥ ps,

(42)

at some desired probability level ps. We note that compared
to the robust approach, we do not require el(x, u) ∈ E l(x, u)
with certainty, but rather only at the specified probability
level ps. In practice this can serve to eliminate the need to
address extremely unlikely scenarios that lead to conser-
vative behavior of robust approaches. Recalling the safety
specification given in (2), any robust design that is safe for
all possible residual learning error values in E l(x, u) yields
that Pr((2) | ⋆) = 1 where ⋆ is defined in (42), implying

Pr((2)) ≥ Pr((2), ⋆) = Pr((2) | ⋆)Pr(⋆) ≥ ps, (43)

such that

Pr (x(t) ∈ X and u(t) ∈ U for all t ∈ R≥0) ≥ ps. (44)

The relation between the probabilistic error bound (42)
and constraint satisfaction in probability (44) provide an
intuitive way for trading-off safety and permissiveness,
since lower probability levels ps typically lead to a smaller
learning error bound E l and less conservative robust safety
filter designs. The type of probabilistic condition in (43) has
been utilized in the design of probabilistic safety filters
through HJ reachability [22], [45], CBFs [49], [52], [135],
and PSFs [55], [58].

In theory, any of the advanced safety filter techniques
presented can be combined with the preceding model
classes. In practice, some safety filter techniques naturally
lend themselves to being used with a specific type of
model class, as we highlight in the following sections.
We also note that systems are often subject to unmodeled
external disturbances caused by environmental perturba-
tions, such as wind acting on an airplane or changing road
friction coefficients for a ground vehicle. In contrast to
uncertainty in the model, these disturbances often do not

have an underlying structure that can be discovered by
data. Rather, data is often used to quantify the magnitude
of disturbances, which is then used for a robust design. For
simplicity, the following formulation is presented in the
absence of such disturbances, but we note that the follow-
ing methods for developing safety filters that are robust
to learning error can be used (and in fact, originated) for
robustness to disturbances.

Data-driven Hamilton-Jacobi Reachability
Due to the inherent separation of safety from performance
in HJ reachability, reachability-based safety filter designs
can be used together with any type of controller emitting
the desired control input signal. In particular, reachability-
based safety filters are suitable for filtering learning-
enabled systems like autonomous vehicles throughout
the process of training learning-based components in the
system. We describe such a HJ reachability-based safety
framework for uncertain systems as proposed in [22]. Sev-
eral extensions and variants of this framework have been
proposed to demonstrate the applicability of the frame-
work to high-dimensional systems [45], [136]. We highlight
simulation and experimental results utilizing this frame-
work in “Reachability-based Safe Learning Framework:
Experimental Results” to demonstrate the effectiveness of
reachability-based frameworks in real-world applications.

Hamilton-Jacobi Reachability With Learning Error
First, we describe the HJ reachability analysis that is ex-
tended to account for learning errors by using a differential
game based formulation [137], resulting in a characteriza-
tion of the maximal control invariant set and an associated
optimal safe policy that are robust to bounded learning er-
ror. For the sake of simplified exposition, consider a setting
where the model error en in (40) does not depend on the
input u. Consequently, a learning model f l : Rnx → Rnx ,
a learning error el : Rnx → Rnx , and a pointwise set
E l(x) ⊂ Rnx such that el(x) ∈ E l(x) for all x ∈ X can be
considered. As the value of the learning error is unknown,
it is desirable for a safety filter design to be robust to
all possible learning errors permitted by the pointwise set
E l(x). To this end, consider the dynamics

ẋ = f (x, u) + f l(x) + d, (45)

where d ∈ E l(x) is a disturbance term which captures
the possible effect of el(x) on the system dynamics. To
construct the maximal control invariant set contained in
X in the setting with disturbances, we consider a cost
functional Jd : Rnx × PC(R≥0,U ) × PC(R≥0, Rnx ) → R

similar to (14)

Jd(x0, u(·), d(·)) = inf
t∈R≥0

−sX (x(t)), (46)

where x(·) is the solution to (45) with the initial condition
x0, an input signal u(·), and a disturbance signal d(·) ∈
PC(R≥0, Rnx ).
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The set of non-anticipative disturbance strategies, de-
noted by D is defined as the set of all functionals β :
PC(R≥0,U )→ PC(R≥0, Rnx ) that satisfy

β[u](t) ∈ E l(x(t)) for all u(·) ∈ PC(R≥0,U ) and t ∈ R≥0
(47)

and

β[u1](t) = β[u2](t) for almost all t ∈ R≥0, (48)

for all u1(·), u2(·) ∈ PC(R≥0,U ) s.t.

u1(t) = u2(t) for almost all t ∈ R≥0.

Intuitively, the disturbance signal d(·) resulting from the
strategy β should satisfy the learning error bound d(t) ∈
E l(x(t)) for all time, and the non-anticipative restriction
prohibits d(·) from depending on the future information
of the control signal u(·) [137].

A value function Vd : Rnx → R that accounts for
disturbances can be constructed similarly to (15) through
a zero-sum differential game

Vd(x0) = inf
β[u]∈D

sup
u(·)∈PC(R≥0,U )

J(x0, u(·), β[u](·)). (49)

Computation of Vd can be done by solving the HJ-VI [36]:

0 = min
{
− sX (x)−Vd(x), (50)

max
u∈U

min
d∈E l(x)

∇Vd(x)(f (x, u) + d)
}

,

which has a viscosity solution that characterizes Vd. Simi-
larly to Theorem 2, the value function Vd (49) can be used
to characterize control invariant sets in X that are robust
to learning errors. More precisely, for any ϵ ∈ R≥0, the
set Sϵ = {x ∈ X | Vd(x) ≥ ϵ} is a control invariant
set that is robust to learning errors, and S0 characterizes
the maximal control invariant set contained in X that is
robust to learning errors [22]. Finally, the robust optimal
safe policy κ∗Vd

: Rnx → U can be constructed as

κ∗Vd
(x) = argmax

u∈U
min

d∈E l(x)
∇Vd(x)(f (x, u) + d), (51)

which ensures the set Sϵ is forward invariant in the
presence of learning errors. Compared to the optimal safe
policy defined in (20), this controller introduces the term
mind∈E l(x), which considers the worst-case uncertainty d at
the current state when synthesizing the safe control input.

Reachability-based Safe Learning Framework
The safe set Sϵ and the safe policy κ∗Vd

(x) in the above
formulation can be overly conservative when the set E l(x)
is overestimated. Moreover, under-approximating the set
E l(x) in the construction of the value function Vd can
lead to failure of the system to remain safe in the pres-
ence of learning errors. This motivates incorporating the
data-driven techniques that accurately characterize E l(x)
into the differential game formulation. The framework in
[22] employs Gaussian process (GP) regression [138], a
class of probabilistic learning models. GP regression is
further selected because it is compatible with Bayesian

inference, allowing for confidence in a learned model to
be determined as new data is acquired. It is worth noting
that any robust or probabilistic data-driven models that
provide accurate characterization of model uncertainty can
function well in this reachability framework.

The objective of GP regression is to construct a learned
model f l that approximates the model error en with its
mean prediction and capture the residual learning error el

with its posterior variance. The input data is a sequence of
measured states {xk}nD

k=1 and the output data is noisy mea-
surements of en(xk), taking the form yk = ˆ̇xk − f (xk , uk),
where ˆ̇xk is the noisy estimate of the state derivative based
on numerical differentiation. The posterior distribution of
the GP regression in the jth state dimension is a normal dis-
tribution N (µj(x), σj(x)), representing the estimated distri-
bution of en

j (x) at a state x ∈ Rnx . Thus, the learned model
f l is described by the vector [µ1(x) · · · µnx (x)]

T ∈ Rnx

consisting of the mean predictions in each state dimen-
sion, and the set E l(x) is constructed as the hyperbox
E l(x) = ∏nx

j=1
[
−zσj(x), zσj(x)

]
by taking the confidence

intervals of the posterior distribution in each state dimen-
sion multiplied by the quantile z ∈ R>0.

Given a choice of the quantile z, a probabilistic rela-
tionship is established between the actual learning error,
el, and the estimate of possible learning errors captured by
the set E l(x) as in (42) [22, Section C]. While a conservative
estimate of the possible learning errors E l(x) may satisfy
(42) with a high probability ps, reducing the conserva-
tiveness of an estimate of the possible learning errors
while maintaining (42) with a high probability can permit
better performance. The following result on the differential
game form of HJ reachability establishes a property of
HJ reachability-based safety filter designs relating two
estimates of possible learning errors [22, Proposition 5]:

Theorem 5
Consider two estimates of possible learning errors
E l

1(x), E l
2(x) such that for all x ∈ Rnx , E l

2(x) ⊆ E l
1(x). If

a set S ⊂ Rnx is a control invariant set that is robust for
all possible learning errors in E l

1(x), then it is a control
invariant set that is robust for all possible learning errors
in E l

2(x).

Theorem 5 serves as the central principle underlying
the safe learning framework. When the safe learning
framework is initiated, the learning model has little to no
data and the estimate of possible learning errors E l(x) is
typically quite large. The resulting control invariant set
constructed through HJ reachability that is robust to these
learning errors is conservative and limits the performance
of the system. As learning proceeds, data is incorporated
into the learning model and the control invariant set may
be updated to require robustness to smaller estimates
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X

hS (x) = α−1(ē2)

S

hS (x) = 0

hS (x) = α−1(ē1) [ē1 < ē2]

x(0)

x(t)

FIGURE 6 Schematic of input-to-state safety. In the presence of
residual learning error, a controller that satisfies the CBF constraint
using the learning model (53) may not render the set S forward
invariant. Rather, a larger set that scales with the magnitude of the
learning error is kept forward invariant, reflected by the two nested
sets for the progressively larger learning error bounds e1 and e2.

E l(x). Ideally, learning the smallest set of possible errors
results in a control invariant set that is the maximal control
invariant set in X that can be made robust to the presence
of learning error.

Data-driven Control Barrier Functions
The use of data-driven techniques with control barrier
functions has been an active area of research interest, with
a wide range of a approaches including using models
that are deterministic [24], [47], [48], [50], [139], robust
[51], and probabilistic [46], [49], [52]–[54], [84], [135]. An
underlying robustness property of CBF-based safety filter
design known as input-to-state safety (ISSf) [39], [139]
manifests in each of these approaches, which we now
present in a general context.

Consider the control-affine model (24) with the in-
troduction of a learning model f l and a corresponding
learning error

ẋ = f (x) + g(x)u + f l(x, u) + el(x, u). (52)

Let S be defined as the 0-superlevel set of a continuously
differentiable function hS : Rnx → R, and suppose that
using the learned model f l, we design a safety filter κS :
Rnx ×Rnu → U such that there exists an α ∈ Ke satisfying

∇hS (x)
(
f (x) + g(x)κ(x, udes(t)) (53)

+ f l(x, κ(x, udes(t)))
)
≥ −α(hS (x)),

for all x ∈ Rnx and t ∈ R≥0. This safety filter is designed
to meet the original safety specification encoded by the
barrier function hS and the function α, but does so incor-
porating the learned model f l. Let us further suppose that
there exists an e ∈ R≥0 such that

|∇hS (x)el(x, κ(x, udes(t))| ≤ e, (54)

for all x ∈ Rnx and t ∈ R≥0. This inequality implies that the
effect of the residual learning error on the time derivative
of the barrier function hS is bounded by a constant e.

X
S t

x(k)

x2|k−1

x3|k−1
x4|k−1

f(x(k), udes(k)) = x1|kx2|k
x3|k

x4|k
uncertain
F l(x, u) ̸⊆ F̄ l

FIGURE 7 Learning-based enhanced predictive safety filter. Uncer-
tain model regions (red) are avoided when planning backup trajec-
tories. An additional safety margin (circles) allows for compensation
of the remaining uncertainty during closed-loop operation.

Intuitively, this bound can be made smaller through more
accurate learning models.

Combining these two properties, we have that

ḣS (x, t) ≥ −α(hS (x))− e, (55)

for all x ∈ Rnx and t ∈ R≥0. Noting that α ∈ Ke implies it
has an inverse α−1 ∈ Ke, we have the implication that

hS (x) ≤ α−1(−e) =⇒ ḣS (x, t) ≥ 0. (56)

This preceding implication states that time derivative of
the barrier function hS is non-negative on the boundary of
the α−1(e)-superlevel set of hS

Se = {x ∈ Rnx | hS (x) ≥ α−1(−e)}, (57)

and thus we can conclude via Nagumo’s Theorem (we
have ∇hS (x) ̸= 0 when hS (x) < 0 [140]) that Se is forward
invariant. This analysis highlights a fundamental robust-
ness property of CBF-based safety filter designs since the
set kept forward invariant does not increase dramatically
with small amounts of residual learning error, but rather
scales proportionally. Moreover, this expansion can be con-
trolled by reducing residual learning error through more
data and better learning models that serve to reduce e.
This notion of a safe set that scales with residual learning
error is captured by the idea of ISSf [39]. We note that
not only can ISSf describe the impact of model error in
(40) (without introducing learning models), but provides
insight into robust controller design that allows regulation
over the growth of the forward invariant set [89], [140].

Data-driven Predictive Safety Filters
The close relation between the nominal predictive safety
filter formulation (31) and common model predictive con-
trollers (MPCs) using a terminal set [33] allows to take
advantage of existing advances in the field of robust [13,
Section 3], [34, Section 7] and learning-based model pre-
dictive control [23], [59], [95, Section 5]. While the focus
in the case of PSF is to provide formal guarantees regard-
ing constraint satisfaction, most of the underlying mech-
anisms applied originate from robust model predictive
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control literature. Data-driven PSFs have been developed
for linear robust (distributed) models [56], [57] and linear
(distributed) stochastic models with unbounded process
noise [58], [141, Remark 5]. The support of nonlinear
system dynamics and exploration beyond available data
has been enabled through leveraging probabilistic state-
and input-dependent system models [55], [59]. While the
precise details of each these methods vary, they all operate
using the idea that instead of directly working with the
original safety specifications along predictions (31d), the
constraints are enforced with an additional safety margin.
This margin is designed to compensate for prediction
model errors and disturbances in closed-loop without vi-
olating the original safety constraints of the system. The
rigorous computation of these safety margins is at the core
of robust-, stochastic- and learning-based model predictive
control methods. In the following, we specifically focus
on the technique introduced in [55], which provides a
computationally efficient way to combine PSFs with robust
and probabilistic learning models.

Similar to the nominal PSF formulation and consis-
tent with learning-based model predictive control litera-
ture [23], [95], we work with a discrete-time version of the
learning-based model (41)

x(k + 1) = f(x(k), u(k)) + fl(x(k), u(k)) + el(k), (58)

where we use el(k) to denote el(x(k), u(k)). The learning-
based model in (58) and an uncertainty bound of the
form (42) can be estimated with the previously discussed
GP regression using measurements of the form yk = xk+1−
xk + ϵk with ϵk independent and identically distributed
noise, see "Data-driven Hamilton-Jacobi Reachability". The
central idea of the following approach is to restrict backup
trajectories {xi|k}, {ui|k} to high-confidence subsets of the
state and input space by imposing

E l(xi|k , ui|k) ⊆ Ē l, for i = 0, .., N (59)

along predictions, where Ē l ⊂ Rnx captures a tolerable
amount of one-step prediction errors. This mechanism
causes trajectories to avoid regions with low model confi-
dence due to sparse data coverage, as seen in Figure 7. We
note that (59) can be reformulated as a set of inequality
constraints in the case of Gaussian processes or Gaussian
linear regression, and becomes a convex constraint in the
case of linear features [134, Section 4.1], [55, Section 5.1].

While various existing robust predictive control tech-
niques can be used to obtain robustness in probabil-
ity (43), we focus on a constraint tightening approach
based on [142], [143]. The idea is to introduce increasing
safety margins for all constraints along the prediction
horizon, ensuring recursive feasibility and constraint satis-
faction in closed-loop. In the case of polytopic state, input,
terminal, and confident subspace constraints of the form
{x ∈ Rn|Ax ≤ 1

nA} with A ∈ RnA×n the tightening of the

constraint sets is

X̄i = {x ∈ Rnx | Axx ≤ (1− ϵi)1
nAx }, (60a)

Ūi = {u ∈ Rnu | Auu ≤ (1− ϵi)1
nAu }, (60b)

Ē l
i = {x ∈ Rnx | AEx ≤ (1− ϵi)1

nAE }, (60c)

with 1
n denoting the vector of ones of dimension n and

with a monotonically increasing tightening sequence ϵi
satisfying ϵ0 = 0 and ϵi+1 > ϵi. Integrating the learning-
based model (58) and the tightened constraints (60) into
the predictive safety filter problem (31) yields

min
ui|k
∥udes(k)− u0|k∥ (61a)

s.t. xi+1|k = f(xi|k , ui|k) + fl(xi|k , ui|k), (61b)

x0|k = x(k), (61c)

xi|k ∈ X̄i, for i = 0, ..., N − 1, (61d)

xN|k ∈ S t
N , (61e)

ui|k ∈ Ūi, for i = 0, ..., N − 1, (61f)

E l(xi|k , ui|k) ⊆ Ē l
i , for i = 0, ..., N − 1. (61g)

Similar to the nominal case, constraint satisfaction under
application of u(k) = u∗0|k can be shown through recursive
feasibility of (61) using the tightened constraints together
with a robust terminal invariant S t set:

Assumption 2 (Robust Terminal Control Invariant Set)
Consider the system (58). There exists a polytopic terminal
set S t ⊆ X̄N and a Lipschitz continuous terminal control
law κt : S t → Rnu such that for all x ∈ S t it holds that

1) E l(x, κt(x)) ⊆ Ē l
N ,

2) κt(x) ∈ ŪN , and
3) f(x, κt(x)) + fl(x, κt(x)) + e ∈ S t, for all e ∈ Ē l

N .

If 0 ∈ int(X × U ) and the linearization of (58) at the
origin is stabilizable, then a sufficiently small learning error
E l(x, u) allows the construction of a terminal set S t and
terminal controller κt satisfying Assumption 2 [13, 3.3.2].
Compared with the nominal PSF terminal set assumption
(Assumption 1), Assumption 2 ensures forward invariance
of a polytopic terminal set S t for all possible learning er-
rors and requires κt to be Lipschitz continuous. Combining
Assumption 2 with continuity assumptions on E l(x, u) and
the dynamics model (58) enables a characterization of a
data-driven PSF as follows [55, Theorem 4.6]:

Theorem 6
Let Assumption 2 hold and assume that (58) and the cor-
responding uncertainty bound E l(x, u) satisfying (42) are
Lipschitz continuous mappings with Lipschitz constants
Lf , LE . Consider (60) with constraint tightening sequence

ϵi = ϵ
1−

√
Lf

i

1−
√

Lf

for some ϵ > 0, (62)
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and allowable disturbance bound Ē l
γ = {x ∈ Rn|AEx ≤

γ1nE } ⊂ Rnx with scaling factor γ > 0. If LE ≤ cϵ for
some c > 0, then there exists a γ > 0 small enough that
initial feasibility of (61) ensures safe system operation for
all future times according to (2) at probability level ps.

Theorem 6 states that Lipschitz continuity allows de-
signing the learning-based PSF problem (61) using the it-
erative constraint tightening sequence (62) in combination
with the admissible disturbance bound Ē l

γ along backup
trajectories. The remaining tuning parameters are therefore
limited to the scalars ϵ and γ. Furthermore, if LE is small
enough for a selected ϵ, a sufficiently small γ > 0 exists
such that initial feasibility implies constraint satisfaction
at probability level ps for all times. Intuitively, LE suffi-
ciently small means that the difference between E(x, u) and
E(x + ∆x, u + ∆u) must be small for small values ∆x, ∆u,
such that the error bound is not allowed to change rapidly.
In the case of GP Regression using a squared exponential
kernel, this relates either to a sufficiently large length-scale
parameter or homogeneous data coverage [138].

If problem (61) is not initially feasible due to the
confident subset constraint (61g), either the model needs
to be refined using additional data, or the probability
level ps can be lowered, since ps → 0 typically implies
E(x, u) → {0}. While the exact values of Lf , LE , c, γ are
challenging to compute explicitly, the discussion in [55,
Section 4.3] using ρ = L provides an extensive practical
tuning guideline with a statistical verification procedure.
Note that conservativeness can further be reduced using
incremental Lyapunov functions [143] instead of Lipschitz
continuity of (58) [55].

CONCLUSION
This article provides an introduction to three approaches
for constructing safety filters for safety-critical control
design, and discusses recent research that has sought
to unify these techniques. The prospect of bridging the
gap between first-principle models and real-world systems
through data is a topic on the forefront of research in con-
trol theory and applications. We highlight how the three
safety-filter techniques can be integrated with learning-
based models to yield theoretical and practical safety
guarantees in the face of model uncertainty. Applications
demonstrating each of the safety filter techniques are
presented and show that the proposed approaches are
promising solutions for real engineering challenges.

While we have provided an overview of standard forms
and data-driven extensions of Hamilton-Jacobi reachabil-
ity, control barrier functions, and predictive safety filters,
there remain several interesting directions for research,
both in and outside of a data-driven paradigm. The design
of hierarchical control structures for achieving safety that

blend the three techniques may be able to capitalize on
advantages regarding scalability, optimality, and compu-
tational efficiency present in each technique to produce
both performant and robust safety filter designs. A second
set of questions relates to the safe collection of data for
a dynamic system, the processing of large data sets for
efficient evaluation of learning models and uncertainty
estimates to enable integration into high-frequency closed-
loop controllers, and facing the challenges of systems
for which previous data becomes obsolete as the system
changes over time. We believe that each of the questions
can not be answered in isolation, but rather is best an-
swered by considering the impact of data through the lens
of safety filter design.

AUTHOR INFORMATION
Kim P. Wabersich (wabersich@kimpeter.de) received a
BSc. and MSc. degree in engineering cybernetics from
the University of Stuttgart in Germany in 2015 and 2017,
respectively. He completed his doctoral studies at ETH
Zurich in 2021 and is currently a postdoctoral researcher
with the Institute for Dynamic Systems and Control (IDSC)
at ETH Zurich. His research interests include learning-
based model predictive control and safe model-based re-
inforcement learning.

Andrew J. Taylor (ajtaylor@caltech.edu) received the
B.S. and M.S. degrees in aerospace engineering from the
University of Michigan, Ann Arbor, in 2016 and 2017,
respectively. He is currently pursuing a Ph.D. degree at the
Caltech in Control and Dynamical Systems. His research
interests include safety-critical control for robotic systems
and data-driven control techniques for nonlinear systems.
He is a student member of IEEE.

Jason J. Choi (jason.choi@berkeley.edu) received the B.S.
degree in mechanical engineering from Seoul National
University in 2019. He is currently pursuing a Ph.D. degree
at University of California Berkeley in Mechanical Engi-
neering. His research interests center on optimal control
theories for nonlinear and hybrid systems, data-driven
methods for safe control, and their applications to robotics
and autonomous mobility.

Koushil Sreenath (koushils@berkeley.edu) is an Asso-
ciate Professor of Mechanical Engineering, at UC Berkeley.
He received a Ph.D. degree in Electrical Engineering and
Computer Science and a M.S. degree in Applied Math-
ematics from the University of Michigan at Ann Arbor,
MI, in 2011. He was a Postdoctoral Scholar at the GRASP
Lab at University of Pennsylvania from 2011 to 2013 and
an Assistant Professor at Carnegie Mellon University from
2013 to 2017. His research interest lies at the intersection of
highly dynamic robotics and applied nonlinear control. His
work on dynamic legged locomotion on the bipedal robot
MABEL was featured on The Discovery Channel, CNN,
ESPN, FOX, and CBS. His work on dynamic aerial manip-

JUNE 2020 « IEEE CONTROL SYSTEMS 19



ulation was featured on the IEEE Spectrum, New Scientist,
and Huffington Post. His work on adaptive sampling with
mobile sensor networks was published as a book entitled
Adaptive Sampling with Mobile WSN (IET). He received
the NSF CAREER, Hellman Fellow, Best Paper Award at
the Robotics: Science and Systems (RSS), and the Google
Faculty Research Award in Robotics.

Claire J. Tomlin (tomlin@eecs.berkeley.edu) is the
Charles A. Desoer Professor of Engineering in the De-
partment of Electrical Engineering and Computer Sciences
(EECS), University of California Berkeley (UC Berkeley).
She was an Assistant, Associate, and Full Professor in
Aeronautics and Astronautics at Stanford University from
1998 to 2007, and in 2005, she joined UC Berkeley. Claire
works in the area of control theory and hybrid systems,
with applications to air traffic management, UAV systems,
energy, robotics, and systems biology. She is a MacArthur
Foundation Fellow (2006), an IEEE Fellow (2010), and in
2017, she was awarded the IEEE Transportation Technolo-
gies Award. In 2019, Claire was elected to the National
Academy of Engineering and the American Academy of
Arts and Sciences.

Aaron D. Ames (ames@caltech.edu) is the Bren Professor
of Mechanical and Civil Engineering and Control and
Dynamical Systems at Caltech. Prior to joining Caltech in
2017, he was an Associate Professor at Georgia Tech in
the Woodruff School of Mechanical Engineering and the
School of Electrical & Computer Engineering. He received
a B.S. in Mechanical Engineering and a B.A. in Mathe-
matics from the University of St. Thomas in 2001, and he
received a M.A. in Mathematics and a Ph.D. in Electrical
Engineering and Computer Sciences from UC Berkeley
in 2006. He served as a Postdoctoral Scholar in Control
and Dynamical Systems at Caltech from 2006 to 2008, and
began his faculty career at Texas A&M University in 2008.
At UC Berkeley, he was the recipient of the 2005 Leon
O. Chua Award for achievement in nonlinear science and
the 2006 Bernard Friedman Memorial Prize in Applied
Mathematics, and he received the NSF CAREER award
in 2010, the 2015 Donald P. Eckman Award, and the 2019
IEEE CSS Antonio Ruberti Young Researcher Prize. His
research interests span the areas of robotics, nonlinear,
safety-critical control and hybrid systems, with a special
focus on applications to dynamic robots -— both formally
and through experimental validation.

Melanie N. Zeilinger (mzeilinger@ethz.ch) is an Assis-
tant Professor at ETH Zurich, Switzerland. She received
the Diploma degree in engineering cybernetics from the
University of Stuttgart, Germany, in 2006, and the Ph.D.
degree with honors in electrical engineering from ETH
Zurich, Switzerland, in 2011. From 2011 to 2012 she was a
Postdoctoral Fellow with the École Polytechnique Fédérale
de Lausanne (EPFL), Switzerland. She was a Marie Curie
fellow and Postdoctoral Researcher with the Max Planck

Institute for Intelligent Systems, Tübingen, Germany until
2015 and with the Department of Electrical Engineering
and Computer Sciences at the University of California at
Berkeley, CA, USA, from 2012 to 2014. From 2018 to 2019
she was a professor at the University of Freiburg, Germany.
Her current research interests include safe learning-based
control, as well as distributed control and optimization,
with applications to robotics and human-in-the-loop con-
trol. She is a member of IEEE.

20 IEEE CONTROL SYSTEMS » JUNE 2020



Safety Filter Design Example

This sidebar illustrates and compares the basic safety filter
methodologies by applying each of them to the inverted

pendulum system

d
dt

[
θ

θ̇

]

︸ ︷︷ ︸
ẋ

=

[
θ̇

g
ℓ sin θ

]

︸ ︷︷ ︸
f (x )

+

[
0
1

mℓ2

]

︸ ︷︷ ︸
g(x )

u, (S1)

where the pendulum angle and angular velocity [θ, θ̇] =

[x1, x2] = x define the system state and u is the input torque
applied at the base of the pendulum. The system parame-
ters consist of the mass m = 2 kg, length ℓ = 1 m, and
gravitational acceleration g = 10 m/s2. The physical input
limitation is a maximum applicable torque of 3 N-m, that is,
U = {u ∈ R | |u| ≤ 3}. The safety constraints are defined
as pendulum angle and angular velocity constraints of the form
X = {x ∈ R2 | |x1| ≤ 0.3, |x2| ≤ 0.6}.

ℓ

m · g

θ

FIGURE S1 Inverted pendulum control system.

DESIRED CONTROL INPUT SIGNAL
To compare the different safety filter designs with respect to the
’ideal’ safety filter objective (4), we use the desired control signal

udes(t ) =





3, t ∈ [0, 2),

−3, t ∈ [2, 4),

3, t ∈ [4, 6),

mℓ2 (− g
ℓ sin x1 − [1.5, 1.5]x

)
, else.

(S2)

By alternating between maximum and minimum torque the
desired input signal (S2) tries to violate the system constraints,
requiring safety filter intervention. The adversarial input section
is followed by a stabilizing feedback control law, which does not
consider constraint satisfaction explicitly.

SWITCHING SAFETY FILTER
This section demonstrates how to construct the switching safety
filter (11) using a linear-quadratic regulator (LQR) of the form
κS (x ) = −Kx . The design of κS is based on the linearization of

the system dynamics (S1) around the upward equilibrium point

∆ẋ =

[
0 1
g
ℓ 0

]

︸ ︷︷ ︸
A

∆x +

[
0
1

mℓ2

]

︸ ︷︷ ︸
B

∆u. (S3)

Using the state cost Q = 25I2 and input cost R = 1, we obtain
the gain K = [40.62, 13.69]. An invariant set for (S3) is selected
as the sublevel set of the LQR Lyapunov function [80, Chapter
4]

Sγ = {x ∈ R2|γ− x⊤Px ≥ 0}, (S4)

for some γ > 0 and the positive definite matrix

P =

[
282.26 81.23
81.23 27.38

]
. (S5)

To ensure that Sγ is forward invariant under κS in the
presence of the input constraints U , the level set γ must be
selected such that κS (x ) ∈ U ⇔ | − Kx | ≤ 3 for all x ∈ Sγ

and Sγ ⊆ X . Using the support function of Sγ [8], we obtain
a maximal value of γ = 1.31, for which we denote the safe set
S ≜ S1.31. To certify forward invariance of S with respect to the
nonlinear system (S1), we verify that

max
x∈S
−2x⊤P(f (x )− g(x )Kx ) ≥ 0, (S6)

through nonlinear programming [33]. The resulting safe set is
depicted in Figure S2 (top).

The previously described constructions allow us to imple-
ment the switching-based safety filter in (11) as

κF (x , udes(t )) =




−Kx , x ∈ ∂S or |udes(t )| > 3,

udes(t ), else.
(S7)

The safety controller is used for 0.01 s when it is activated.
The closed-loop simulation of the resulting control structure as
depicted in Figure 2 together with the desired input signal (S2)
are shown in Figure S2. After significant intervention during the
first six seconds, the desired control input signal meets safety
requirements and input bounds (for t ∈ [6, 10]) and is used.

Even though safety is achieved during the entire evolution of
the system, limitations that motivate the advanced techniques
presented in this paper may be observed. The derived safe set
S and safe controller κS yield a conservative safety filter, which
can be seen by the overly large safety margin between the safe
set and the angular constraints in Figure S2 (top). To reduce
such conservativeness, Hamilton-Jacobi (HJ) reachability and
predictive safety filters (PSFs) integrate optimal control based
approaches as demonstrated in the upcoming sections. Fur-
thermore, the switching-based safety control law (S7), derived
from (11) can result in significant input chattering behavior near
the boundary of the safe set as seen in Figure S2 (bottom).
Such behavior is not desirable in practice. To this end, control
barrier functions (CBF) enable a safety filter formulation which
yields a smooth control input signal.
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FIGURE S2 Application of the switching safety filter (S7) to
the inverted pendulum example (S1). (Top) The desired safety
constraints X (solid black line), the switching safety filter safe
set (dashed brown line), and closed-loop trajectory (solid brown
line). (Bottom) Applied input trajectory (brown) and desired
input signal (red). The constraints are indicated with solid black
lines in each plot. While safety is maintained, the switching
safety filter (S7) causes undesirable input chattering and the
safe set only covers a small portion of X .

HAMILTON-JACOBI REACHABILITY SAFETY FILTER
This section demonstrates how HJ reachability allows reducing
the conservativeness of the switching safety filter (S7). The
value function V defined in (15), which describes the maximal
viability kernel of X , is computed by solving the HJ Variational
Inequality (23) numerically using a sufficiently large finite time
horizon T with the HJ optimal control toolbox (helperOC) [S1]
and the Level Set Toolbox [68]. A 101× 201 grid is constructed
on the set X and a finite horizon T = 2.5 s is used for
this computation, which takes roughly a minute on a standard
laptop. The safe set (16) resulting from Theorem 2 is

S = {x ∈ R2|V (x ) ≥ ϵ}, (S8)

with ϵ = 0.02 to account for numerical approximation errors.
See Figure S3 (top) for an illustration of S , which represents an
approximation of the maximal control invariant set in X based
on Theorem 2. The HJ safety filter is implemented as in (22),
and shows a larger safe set than the switching safety filter,
leading to fewer interventions (and correspondingly less chatter
in the input signal) when t ∈ [0, 6], as seen in Figure S3.
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FIGURE S3 Application of the Hamilton-Jacobi based safety fil-
ter to the inverted pendulum example (S1). (Top) The Hamilton-
Jacobi based safe set (dashed purple line) and closed-loop
trajectory (solid purple line). (Bottom) Applied input trajectory
(purple) and desired input signal (red). The safety filter is
significantly less intrusive compared to the switching safety filter
due to the larger safe set S , and displays notably less chattering
in the control input signal.

CONTROL BARRIER FUNCTION SAFETY FILTER
With the goal of reducing the undesirable input chattering of
the previous techniques seen in Figures S2 and S3, we next
construct a safety filter using CBFs. To this end, we follow the
example presented in [S3] and select

hS (x ) = 1− x⊤
(

1/a2 0.5/ab
0.5/ab 1/b2

)
x (S9)

with parameters a, b > 0 as a candidate CBF, yielding a 0-
superlevel set

S = {x ∈ Rnx | hS (x ) ≥ 0} (S10)

describing the safe set, similarly to (S4). The quantities a and b
must be selected to ensure that hS satisfies the condition (27)
for some α ∈ Ke. We consider a function α ∈ Ke of the form
α(r ) = cαr with cα > 0 to be determined. The CBF supremum
condition (27) can be equivalently (modulo input constraints)
expressed as the implication [S3]

∇hS (x )g(x ) = 0⇒ ∇hS (x )f (x ) + α(hS (x )) > 0, (S11)

which in the inverted pendulum setting appears as

∇hS (x )g(x ) = 0⇒ x 2 = − b
2a

x 1, (S12)

for x ∈ R2.
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FIGURE S4 Application of the control barrier function based
safety filter to the inverted pendulum example (S1). (Top) The
control barrier function based safe set (dashed green line) and
closed-loop trajectory (solid green line). (Bottom) Applied input
trajectory (green) and desired input signal (red). The safety
filter smoothly modifies the desired control input signal while
ensuring that the system remains safe, though the safe set is
smaller than the Hamilton-Jacobi approach.

For an x such that ∇hS (x )g(x ) = 0, we have that

∇hS (x )f (x ) + α(hS (x )) = cα +
3

4a2

(
b
a
− cα

)
x 1

2. (S13)

We see that the required implication is satisfied by choosing
cα ≤ b

a . We select the values a = 0.075 and b = 0.15
considering the state and input constraints X and U , respec-
tively, and select cα = 0.2. The resulting safe set is visualized
in Figure S4 (top). The safety filter can be implemented by
solving (29) numerically using the standard YALMIP solver [S4].
We note that the system is kept safe, and the chattering in the
control input signal is eliminated (with jumps only occurring at
discontinuities in the desired control input signal), as seen Fig-
ure S4. We note that the safe set obtained using this approach is
notably smaller than the one used with the HJ reachability safety
filter. Developing constructive approaches for synthesizing less
conservative CBFs to bridge this gap is a topic of ongoing
research.
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FIGURE S5 Application of the predictive safety filter to the
inverted pendulum example (S1). (Top) The implicit predictive
safe safe set with a horizon length of N = 20 (dashed blue line)
and closed-loop trajectory (solid blue line). (Bottom) Applied
input trajectory (blue) and desired input signal (red). The safety
filter anticipates jumps in the desired control input signal and
changes the input preemptively, yielding smooth behavior.

PREDICTIVE SAFETY FILTER
We next implement a PSF that uses a receding horizon ap-
proach to enable smooth filtering of control inputs while main-
taining a large control invariant set. The first step to construct
a PSF as in (31) is taking the Euler time discretization of the
dynamics (30). Using a discretization time of ∆T = 0.05 yields
the discrete dynamics

x (k + 1) = x (k ) + 0.5(f (x (k )) + g(x (k )))u(k ). (S14)

We next construct a terminal invariant set S t ⊂ X . Application
of the linearization-based approach on page 10 at the origin with
c = 0.2 and γ = 1 yields a terminal invariant set

S t
1 = {x ∈ Rnx |1− x⊤P t x ≥ 0} (S15)

with

P t =

[
128.10 41.13
41.13 15.98

]
(S16)

We use IPOPT [S5] with the automatic differentiation tool
Casadi [S6] to verify using randomly selected warm-starts that

x ∗ = argmax
x∈S t

1

R(x ) < 0. (S17)
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FIGURE S6 Implicit safe set SPSF
N (32) of the predictive safety

filter (31) for different planning horizons N . Longer horizons
lengths increase the size of SPSF

N until it converges to the
maximal control invariant set in X .

We implement (31) with a planning horizon of N = 20 also using
IPOPT [S5] and Casadi [S6]. While solve time is not critical
in simulation, real-world applications may require tailored algo-
rithms and software packages, see for example, [34, Section
12] and references therein. Figure S5 illustrates the resulting
safe set and closed-loop trajectories. While the PSF is both
permissive and smoothly filters the desired control input signal,
the required online computations increase by multiple orders of
magnitude. The computational load can typically be balanced
by reducing the planning horizon, which, however, also reduces
the corresponding implicit safe set as illustrated in Figure S6.

COMPARISON OF APPROACHES
We compare the various safety filter implementations in Figure
Figure S7. In the top figure, we compare the different safe
sets (including two for the predictive safety filter using different
horizons). We see that the HJ reachability safety filter (purple)
contains the safe sets for the switching safety filter, CBF safety
filter, and the PSF using the shorter horizon length. The PSF
using the longer horizon contains the HJ reachability safe set,
which is due to using ϵ = 0.02 to account for numerical error
when finding the HJ reachability safe set. The bottom figure
shows the integral of the deviation of the input from the desired
control input signal (4a). The switching safety filter and PSF with
a short horizon have the biggest deviation, while the methods
resulting in the largest safe sets modify the desired control input
signal the least.
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FIGURE S7 Comparison of various safety filters methods. (Top)
The safe sets associated with each technique using the color
codes in Figures S2-S6. (Bottom) The value of the safety filter
objective (4a). Lower values of quantity indicate that the safety
filter permits more use of the desired control input signal.
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Hamilton-Jacobi Reachability Safety Filter Applications

Hamilton-Jacobi (HJ) reachability provides an effective tool
for guaranteeing and verifying performance and safety

properties of a system. The notion of a reachable set can
be used to describe regions in the state space from which
achieving performance goals or satisfying safety constraints is
feasible. Such sets are often characterized as level sets of a
value function of an optimal control or differential game problem,
for instance, as in Theorem 2. Moreover, when a controller
is not pre-specified, reachability formulations can be used to
synthesize controllers that achieve safety and performance
in an optimal manner as in (20). Finally, model uncertainty
and exogenous disturbances can be directly incorporated into
reachability formulations, permitting the construction of robust
control invariant sets. The availability of tools [68] for computing
value functions establishes HJ reachability as a framework for
constructive verification and safe control synthesis. This have
led to the application of HJ reachability in safety-critical real-
world settings such as aircraft traffic management [9], real-time
motion planning [144], verification of acrobatic drones [S2] as
seen in Figures S8 and S9, and autonomous vehicle navigation
[S3] as seen in Figure S10.

FIGURE S8 A mosaic of an autonomous back-flip for the STAR-
MAC quadrotor [S1]. The controller takes the system through a
sequence of mode transition from initiating the impulse mode
(a), in which the vehicle rotation is induced from strong motor
thrust, entering the drift mode (b), where it turn offs the motors
and continues free-falling in (b)–(f), and entering the recovery
mode (f), in which quadrotor returns to hovering in (f)–(j) [S2].
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[S3] Bajcsy, A., Bansal, S., Bronstein, E., Tolani, V., & Tomlin, C.J.
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FIGURE S9 Reachable sets in the pitch angle ϕ and pitch rate
ϕ̇ of the drone back-flip maneuver seen in Figure S8. A pitching
thrust is applied in the light red region, and the drone transitions
from a pitch thrust to drifting in the dark red region. The drone
transitions from drifting to recovering in the dark blue region,
after which it arrives at an equilibrium configuration. The ability
to perform the back-flip while ensuring a safety constraint on
the minimum altitude of the vehicle are verified by analyzing
reachable sets for the full system during the impulse, drift, and
recovery stages of the vehicle. [S2].

FIGURE S10 Safe autonomous navigation framework for an
a priori unknown environment based on HJ reachability. The
framework treats unexplored portions of the environment as an
obstacle and uses HJ reachability to compute the safe region
and the safe controller for the vehicle, which is updated in real-
time as the vehicle explores the environment. A vision-based,
learning-based planner is deployed to reach the navigation goal
while the HJ reachability-based safety filter (22) keeps the robot
safe when it is at risk of colliding with obstacles [S3].
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Reachability-Based Safe Learning Framework: Experimental Results

The Hamilton-Jacobi (HJ) reachability-based safe learning
framework proposed in [22] has been demonstrated on a

quadrotor subjected to unknown dynamics due to wind effects.
The quadrotor attempts to track a reference trajectory using
either a linear quadratic regulator or a tracking policy learned
online. A HJ reachability-based safety filter is utilized to prevent
the quadrotor from colliding with its environment. However, a
safety filter that is overly conservative may hinder not only the
tracking performance, but also the training of the learning-based
policy by preventing it from adequate exploration. To reduce
conservativeness, the safety filter must address the unknown
dynamics by learning from the actual system data, revealing a
balance between safety and learning that must be achieved.

Figure S11 shows a phase portrait of the vertical position
and velocity coordinates of the quadrotor as it learns a tracking
policy. The conservativeness of the safe set is reduced over
time as the learning model improves, eventually allowing the
learning-based policy to successfully perform the tracking task
while avoiding collisions. In Figure S12, a strong wind is intro-
duced near the ground, which the system has not encountered
before. Reliance on the previously learned policy that is un-
aware of this disturbance leads to a deterioration of safety as
seen in scenario (a). However, when the accuracy of the learned
model is validated online using data that captures the new
unknown dynamics, the system is kept away from the region
where the model is unreliable until a new model can be trained,
thus leading to safety as seen in scenario (b).

FIGURE S11 Quadrotor altitude HJ reachability safe sets being
updated online through learning. The sets progress from S1 to
S4 as the system gathers data and successively improve the
learned dynamics model [22].

Finally, the experiment is extended to simulation with the
quadrotor tracking a figure-eight reference trajectory in 3D
space. While in the previous scenarios the HJ safe set com-
putation is done only for the vertical dynamics, to ensure safety
constraints in the full 3D environment, the HJ safe set compu-
tation is done online for the 10D full quadrotor dynamics. The

computation is facilitated by incorporating modern reachability
computational techniques including state-decomposition [70],
warm-starting [71], and adaptive gridding [45], which took an
average of 206.6 s to update the safe set online.

(a) w/o online guarantee validation (b) with online guarantee validation

FIGURE S12 Quadrotor learning a vertical flight policy while
avoiding collisions with the ground. When the fan is turned
on, the system experiences unknown dynamics which have not
appeared in previous data, which can lead to a ground collision
using the previous learned policy. An online validation method
detects that the previously learned model fails to describe
the new unknown dynamics, and utilizes a safe controller that
avoids regions of the state space (close to the fan) where the
new unknown dynamics are present [22].

FIGURE S13 Trajectories of the quadrotor tracking a reference
trajectory using a linear quadratic regulator in 3D space. The
quadrotor begins in yellow, and then experiences a sudden
change in wind (blue arrows). While the safe set is updated
to account for the new unknown dynamics, online validation
of the learned model prevents the trajectory from passing the
uncertain wind area (orange trajectory), until the safe set update
is complete (pink trajectory) [45].
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Control Barrier Function Safety Filter Applications

Control barrier function (CBF) based safety filters have seen
extensive use in real-world applications, including mobile

robots [83], robotic swarms [84], aerial vehicles [85], robotic
arms [86], robotic manipulators [87], quadrupedal robots [88],
bipedal robots [50], and automotive systems [89]. Practical
safety tasks can often be encoded using the notion of for-
ward invariance, such safe foot placement on viable footholds,
maintaining a safe following distance, avoiding obstacles in a
complex dynamic environment, or respecting positioning con-
straints, as seen in the various examples in Figures S14-S17.

FIGURE S14 Control barrier function (CBF) safety filter on
a quadruped. A multilayered safety filter design is used that
integrates predictive safety filters with CBFs to ensure safe
foot placement on viable footholds while maintaining system
stability. CBF constraints are integrated into both a mid-level
predictive filter and a low-level CBF based filter given by (29),
ensuring a consistent safety specification across planning and
control layers [88].

FIGURE S15 Control barrier function (CBF) safety filter on a
connected automated semi-trailer truck. The desired control
input signal udes is derived from an expert-designed controller
that balances speed tracking with passenger comfort, but does
not keep the system safe. A CBF-based safety filter constructed
using the input-to-state safety notion of robustness ensures
safety of the truck in the presence of complex unmodeled
braking system dynamics [89].

In each of these dynamic applications safe control com-
putations must be performed quickly. The formulation of CBF-
based safety filters via convex optimization programs such as
in (29) permits a reliable and efficient means to quickly filter
desired control input signals. Several of these examples incor-
porate horizon-based elements seen in Hamilton Jacobi and
predictive filter methods, either in the use of low-rate predictive
filters (Figure S14), offline reference trajectories (Figure S16) or
backup set CBFs (Figure S17) to achieve both strong closed-
loop performance in addition to safety.

FIGURE S16 Control barrier function (CBF) safety filter on
a robotic arm in an industrial kitchen. Maintaining safety in
a dynamic work environment shared with human personnel
requires online modification of arm reference trajectories, but
directly recomputing trajectories online is computationally in-
tractable for real-time operation. CBF-based safety filters are
used to efficiently modify trajectories given ongoing changes in
the environment. [86].

FIGURE S17 Control barrier function (CBF) safety filter for
geofencing of high speed drone. A backup set CBF safety filter
is designed to safely filter pilot inputs for a racing drone flying at
high speeds (100 [km/h]), enabling high-risk acrobatic maneu-
vers while maintaining safety. The lightweight nature of CBF-
based safety filters permits the use of only onboard sensing
and computation, enabling beyond line-of-sight operation and
robustness to ground communication failures [145].
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Data-Driven Control Barrier Function Safety Filter Applications

While the application of CBF-based safety filters does not
require data-driven methods to deal with imperfect sys-

tem models, there have been several applications where the
incorporation of data has led to improvements in the safety
of a systems. In this sidebar we highlight successful experi-
mental implementations of data-driven CBF-based safety filters.
In Figures S18 and S19 we see applications where learning
models are used to mitigate the error between a system model
and the physical system. In both examples, a baseline CBF-
based safety filter given by (29) is modified with learning mod-
els, yielding safe behavior. Figure S20 shows an example of
preference-based learning [146] being used to tune parameters
of a robust CBF-based safety filter. By iteratively incorporating
designer preferences on closed-loop system behavior, a CBF-
based safety filter that balances performance with safety can be
synthesized. These results demonstrate the potential of data-
driven CBF-based safety-critical control design methodologies.

FIGURE S18 Learning control barrier function (CBF) time
derivatives on the AMBER-3M bipedal robot. Walking robots
often possess model uncertainty, making it difficult to satisfy
precise foot placement constraints. By learning the impact of
this model uncertainty on the dynamics of the CBF defining foot
placement constraints, a CBF-based safety filter using learning
models can be synthesized that reduces constraint violation.
The two colored curves correspond to CBF values for con-
straints on each foot across multiple steps, with the constraint
corresponding to the blue curves improving (remaining above
zero) after incorporating learning models [50].

FIGURE S19 Learning control barrier function (CBF) time
derivatives on a Segway robot. The baseline CBF-based safety
filter (green curves) does not respect safety constraints on the
pitch and pitch rate of the Segway due to error between the
system model and the physical system. By integrating data-
driven learning models into the CBF-based safety filter, safety
of the system is achieved (blue curves). We note that although
the baseline CBF-based safety filter does not respect safety
constraints, the system remains close to the safe set, indicating
input-to-state safe behavior with respect to model uncertainty
inherent in CBF-based safety filters [24].

FIGURE S20 Preference-based learning for human-in-the-loop
control barrier function (CBF) safety filter tuning. Facing un-
certainty, the design of CBF-based safety filters must balance
robustness and performance. Preference-based learning can
translate a designer’s evaluation of closed-loop behavior into
controller parameter updates that achieve this balance. The ini-
tial CBF-based safety filter design overestimates uncertainties
and yields conservative behavior with the quadruped remaining
stationary. Incorporating user preferences to modify safety filter
parameters allows the quadruped to navigate safely navigate
obstacles, thus balancing safety and performance [147].
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Predictive Safety Filter Applications: Experimental Race Cars and Simulated Quadrotors

In the following, we demonstrate two applications of predictive
safety filters (PSFs). The first example considers an exper-

imental miniature race car application as in [S1], which imple-
ments the soft constrained PSF (37) to enhance either a human
driver or an imitation learning-based policy with safety guar-
antees. Parameters used in the drive-train dynamics and the
Pacejka [S4, Section 13.5] tire model are identified from mea-
surements. The second example demonstrates a probabilistic
PSF formulation for a quadrotor as in [S2]. The constraints
in (61) are implemented using a Bayesian model to ensure
safety in probability during online controller tuning, during which
ground crashes would occur without the filter in place.

SAFE MINIATURE RACE CAR OPERATION AND IMITATION
LEARNING
We consider a dynamic bicycle model [S3, Section 2] with states
x = [px , py , ψ, vx , vy , r ] and inputs u = [δ, τ] as described in
Table S1 and dynamics given by

ẋ =




vx cos(ψ)− vy sin(ψ)
vx sin(ψ) + vy cos(ψ)

r
1
m
(
Fx − Fyf sin(δ) + mvy r

)
1
m
(
Fyr + Fyf cos(δ)−mvx r

)
1
Iz

(
Fyf lf cos(δ)− Fyr lr

)




, (S18)

where the lateral forces are modeled according to a Pacejka
tire model [S4, Section 13.5] as

αf = arctan
(

vy + lf r
vx

)
− δ, αr = arctan

(
vy − lr r

vx

)
, (S19)

and
Fyf /yr = Df /r sin(Cf /r arctan(Bf /r αf /r )), (S20)

and a drive-train model is used for the longitudinal force

Fx = C1τ + C2τ2 + C3vx + C4v 2
x + C5τvx . (S21)

All parameters are described in Table S1, which have been
identified using least-squares regression.

The input is limited by the maximum steering angle and
maximum drive-train authority and the safety constraints re-
quire the vehicle to stay within track boundaries as depicted
in Figure S21. The constraint set X is formulated in track-
relative error states, which also simplifies the computation of the
terminal invariant set according to Assumption 1 using convex
approximations techniques [S1]. The PSF is implemented in a
nominal fashion using soft constraints (37) to ensure practical
feasibility. We consider a driver-assistance scenario as an ex-
periment, with the desired input signal udes(k ) provided by a
human driver that is potentially unsafe with respect to the track
boundary safety requirements. The PSF provides necessary
interventions online to keep the vehicle safe in a minimally
invasive fashion, yielding control of the vehicle to the driver as
long as the driver’s actions remain safe.

TABLE S1 States, Inputs and Parameters of Vehicle

State symbol Quantity
px /y x-y coordinates of the car
Ψ Heading angle
vx /y Velocity in car frame
r Yaw rate in car frame

Input symbol Quantity
δ Steering angle
τ Drive-train command

Parameter symbol Quantity
m Mass
Iz Yaw moment of intertia
lf /r Distance between center of gravitiy

and front/rear axles
Df /r , Cf /r , Bf /r Pacejka tire model parameters
C1, C2, C3, C4, C5 Drive-train model parameters

FIGURE S21 Miniature race car example. (Top) Vehicle trajec-
tory with the magnitude of safety filter intervention. (Middle,
Bottom) Human driver control inputs providing the desired
control signal by a joystick, as well as control inputs resulting
from the PSF. The dashed blue line indicates the transition from
safe driver inputs to unsafe inputs.
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Figure S21 illustrates a corresponding experiment with safety
intervention magnitudes along a closed-loop trajectory. The
input comparison plot shows the proposed desired input signals
and the filtered, applied input signals. The human performs
safe driving during the first four seconds, which can be seen
by the unfiltered application of the proposed input signals. In
contrast, after this initial time period, the driver purposefully
applies unsafe actions, which do not pass the PSF and get
modified to ensure safety as desired. As shown in the plot, the
PSF keeps the vehicle within track boundaries at all times.

In addition to the driver assistance scenario, [S1, Section
VI.B] demonstrates the combination of the same PSF with an
imitation learning algorithm that reproduces a carefully selected
expert policy using a deep neural network approximation. The
PSF successfully keeps the system safe during so-called DAg-
ger learning episodes [148] and shows minimal intervention
after convergence to an approximately optimal control policy.

PREDICTIVE SAFETY FILTERS USING BAYESIAN MODEL
ESTIMATES FOR SAFE QUADROTOR TUNING
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Fig. 4. Quadrotor experiment using the Bullet Physics SDK
(Coumans and Bai; 2016–2019). Top-left: Graphical interface
showing the optimal safe trajectory (blue line). Top-right:
Quadrotor trajectories projected on the x � z plane using
an unsafe policy search (red lines) and the safety augmented
policy search (blue lines). Bottom: Zoom-in of top-right plot,
where red dots represent states with < 0.01 [m] minimum
distance to the ground, which we classify as ground contact.

with ⇡t
S = 0. The resulting problem (6) with planning

horizon N = 50 was solved in real-time using Ipopt
(Wächter and Biegler; 2006) together with the CasADi
framework (Andersson et al.; 2018) for automatic dif-
ferentiation.

Results: Combining the learning-based swing up policy
with a predictive safety filter based on only 10 initial
data points around the stable downward position results
in cautious closed-loop system trajectories that are dis-
played as green lines in Figure 3 (middle). The corre-
sponding optimal solution after 120 learning episodes is
depicted in Figure 3 (middle). We can then leverage the
cumulated data from the first experiment (18000 data
samples) to refine the prediction model of the safety fil-
ter. The additional data enables a significantly less con-
servative learning behavior, see blue trajectories in Fig-
ure 3 (middle), and supports a complete swing-up, which
demonstrates safe exploration beyond available data.
The corresponding optimal solution after 120 learning
episodes is shown in Figure 3 (middle), where the circle
radii indicate the magnitude of safety ensuring modifi-
cations of the learning policy.

5.2 Safe data-driven quadrotor learning control

To demonstrate the presented method for a more chal-
lenging simulation example, we consider the AscTec
Hummingbird drone, simulated in the Bullet Physics

SDK (Coumans and Bai; 2016–2019), see Figure 4
(Top-left), in combination with a single rotor force
model (Furrer et al.; 2016). We employ a two-layer con-
trol structure, where an inner PD control loop takes
desired pitch, roll and vertical acceleration in the body
frame and outputs control signals to the motors. This
enables modeling of the inner controlled system around
the hovering equilibrium as done in Hu et al. (2018)
using 10 states x̃ 2 R10, three inputs u 2 R3, and
dynamics of the form x̃(k + 1) = ✓>�(x̃, u). State con-
straints are given by minimum height z � 0.175 [m]
and maximal vertical velocity |ż|  1 [m/s] to avoid
ground contact and to ensure the validity of the dy-
namics model. The inputs to the inner control loop are
normalized to |ui|  1.

Unsafe learning policy ⇡L: The overall goal is to ap-
proach the landing position x = 3 [m], y = 2 [m], and
z = 0.2 [m] close to the ground, which is indicated by the
red cube in Figure 4 (Top-left), starting from an initial
hovering position at z = 3.5 [m], x = y = 0 [m] using
an outer PD controller with state and input saturation,
which is parametrized as

⇡L(x̃; p, d) :=

8
<
:

clip(p12(xd � x) + d12ẋ,�1, 1)

clip(p12(yd � y) + d12ẏ,�1, 1)

clip(p3(zd � z) + d3ż,�1, 1)

where clip(x, c1, c2) := max(min(x, c2), c1) and with
PD-controller gains p12, p3 2 [0, 10] and d12, d3 2
[�10, 0]. Similar to the example presented in Section 5.1,
we use Bayesian Optimization (Neumann-Brosig et al.;
2019), with `(x̃, u) := |xd � x| + |yd � y| + |zd � z| +
100k⇡L(x̃)� v⇤0|kk2 that heavily penalizes safety ensur-
ing actions by the safety filter. Direct application of
the learning algorithm yields a significant number of
ground contacts (in addition to violations of the maxi-
mum vertical velocity) as shown in Figure 4 by the red
trajectories over a total of 240 learning episodes, where
ground contacts are defined as < 0.01 [m] minimum
distance to the ground and are highlighted by red dots.

Predictive safety filter from data: Similarly to the nu-
merical example in Section 5.1, we construct a model via
Bayesian Regression using a Gaussian prior on the pa-
rameters ✓ together with Gaussian noise on observations.
The data required for infering the prediction model is
generated through experiments at a safe altitude us-
ing 100 random step inputs that are applied for 60 [s]
to the inner control loop. Based on the inferred model,
the constraint tightening was experimentally chosen as
⇢ = 0.999, ✏ = 0.01 using posterior samples as described
in Section A.3 with a maximum allowable error set E�

defined as the 2-norm ball with radius 0.02. The planning
horizon is given by N = 20 and the terminal set is se-
lected as a sufficiently high altitude of z � 1.5 [m], from
which we can guarantee constraint satisfaction for all
future times using, e.g., suboptimal PD controller gains

11

FIGURE S22 Safe Quadrotor Gain Tuning. (Top-Left) PyBullet
quadrotor simulation, showing the optimal safe trajectory (blue
line). (Top-Right) Learning episode trajectories without (red
lines) and with (blue lines) the safety filter. (Bottom) Ground
collisions are indicated with red squares.

In the second example [S2], we consider the AscTec Hum-
mingbird drone, simulated in the Bullet Physics SDK [S5] as
seen in Figure S22 (Top-left). A two-layer control structure
enables position tracking, where the inner control loop takes
pitch, roll, and vertical acceleration as input and commands

motor torques. The outer controlled system model [S6] consists
of states x ∈ R10, inputs u ∈ R3, and dynamics of the form
x (k + 1) = θ⊤trueϕ(x , u). The safety constraint is to stay above
the ground, while the learning task is to efficiently tune an outer
saturated PD controller to approach a specific landing position
xd , yd , zd . The outer PD controller takes the form

πdes(x ; p, d ) =





clip(p12(xd − x ) + d12ẋ ,−1, 1),

clip(p12(yd − y ) + d12ẏ ,−1, 1),

clip(p3(zd − z) + d3ż ,−1, 1),

where clip(x , c1, c2) = max(min(x , c2), c1), with PD-controller
gains p12, p3 ∈ [0, 10], and d12, d3 ∈ [−10, 0]. A Bayesian
optimization algorithm [S7] episodically adjusts the PD gains to
minimize |xd − x |+ |yd − y |+ |zd − z |+ 100∥πdes(x )− u∗0|k ∥,
where safety ensuring actions are largely penalized during the
learning process. As depicted in Figure S22 (bottom), the direct
application of the learning procedure results in ground crashes.

The learning-based safety filter model (58) is obtained from
hovering data at a safe altitude and inferred using Gaussian
process regression in a parametric fashion. The learning-based
PSF of the form (61) was designed using L = 0.999 (based
on an incremental stabilizability argument instead of Lipschitz
continuity) with constraint tightening fraction ϵ = 0.01. The
confident subset constraint was designed to achieve constraint
satisfaction with probability ps = 0.9. The terminal set was
formulated as a subset of the value function corresponding
to a linear quadratic regulator for the hovering position using
a linearization of (58). The Bayesian optimization PD tuning
results with the safety filter are shown in Figure S22, where
safety is ensured during all 240 learning episodes. The learned
controller achieves good performance and does not require
safety interventions after completion of learning.
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