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Control in the real world is hard
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But: Pretty when it works…

[1] R. Grandia, A. J. Taylor, M. Hutter, A. D. Ames, “Multi-

Layered Safety for Legged Robotics via Control Barrier Functions 

and Model Predictive Control”, 2020.  
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Claim: Need to Bridge the Gap

Bridge the 
Gap

Theorems & Proofs Experimental Realization
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Contributions
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• Framework for achieving safety of sampled-data systems via  
Control Barrier Functions (CBFs) and approximate discrete 
time models

• Definition of practical safety analogous to that of practical 
stability for sampled-data systems

• Analysis of relationship between a CBF and an approximate 
discrete time model that yields convex optimization-based 
controllers
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Barrier Function [2]

[2] A. Ames, X. Xu, J. Grizzle, P. Tabuada, “Control Barrier Function 

Based Quadratic Programs for Safety Critical Systems”, 2017.
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[2] A. Ames, X. Xu, J. Grizzle, P. Tabuada, “Control Barrier Function 

Based Quadratic Programs for Safety Critical Systems”, 2017.

Safety [2]

Safe Set
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Control Barrier Function [2]

CBF Quadratic Program [2]

How are these controllers implemented? 

[2] A. Ames, X. Xu, J. Grizzle, P. Tabuada, “Control Barrier Function 

Based Quadratic Programs for Safety Critical Systems”, 2017.
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Sample-and-Hold

Discrete State Transitions

Discrete Dynamics

How do we work with?

Discrete Time Design[8]

[8] S. Monaco, D. Normand-Cyrot, “Advanced Tools for Nonlinear Sampled-Data Systems’ Analysis and Control”, 2007.

What kind of guarantees?
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Approximate Discrete Model

[9] D. Nešić, A. Teel, P. V. Kokotović, “Sufficient 

conditions for stabilization of sampled-data nonlinear 

systems via discrete-time approximations”, 1999.

[10] D. Nešić, A. Teel, “A framework for stabilization 

of nonlinear sampled-data systems based on their 

approximate discrete-time models”, 2004. 
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Optimization-Based Controllers

[11] A. Taylor, V. Dorobantu, Y. Yue, P. Tabuada, A. 

Ames, “Sampled-Data Stabilization with Control Lyapunov 

Functions via Quadratically Constrained Quadratic 

Programs”, 2022.  
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Practical Stability[9] Only at sample times

Relaxation decreases 
with sample period
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Practical Stability[9]

Equi-Lipschitz Lyapunov Function[9]

Design with approximation endows 
exact system with guarantees!

[9] D. Nešić, A. Teel, P. V. Kokotović, “Sufficient conditions for stabilization of 

sampled-data nonlinear systems via discrete-time approximations”, 1999.



Relevant Questions
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1. What is an appropriate definition of practical safety?

2. How will practical safety connect with the notion of a sampled-
data Barrier Function? 

3. What sort of approximate discrete transition maps should 
we use with sampled-data Control Barrier Functions? 
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Practical Safety Result

Designs using discrete approximation 
provide theoretical safety guarantees
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Double Integrator
Sampled-Data Barrier 
Function Candidate

Euler Approximation SD-CBF Evolution

Input does not appear!

2nd Order Approximation

SD-CBF Evolution

Input appears!
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Runge-Kutta Approximation
One-Step Consistency

Sufficient Conditions
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Structured System

Partially Concave Barrier Function

Runge-Kutta Approximation Order

Constraint Convexity

Optimization-Based Controller

Convex optimization problem class 
depends on safe set geometry
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Inverted Pendulum
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Double Inverted Pendulum
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Safety Violations
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Conclusions

• Framework for achieving safety of 
sampled-data systems via  Control 
Barrier Functions (CBFs) and 
approximate discrete time models

• Definition of practical safety analogous 
to that of practical stability for sampled-
data systems

• Analysis of relationship between a CBF 
and an approximate discrete time 
model that yields convex optimization-
based controllers
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Thank You!

Safety of Sampled-Data Systems with Control Barrier Functions 
via Approximate Discrete Time Models

Andrew J. Taylor Victor D. Dorobantu Ryan K. Cosner

Yisong Yue Aaron D. Ames
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