

Safety of Sampled-Data Systems with Control Barrier Functions via Approximate Discrete Time Models

Andrew J. TaylorVictor D. DorobantuRyan K. CosnerYisong YueAaron D. Ames

Computing and Mathematical Sciences California Institute of Technology

December 9th, 2022 Control & Decision Conference (CDC) 2022

Andrew J. Taylor

Control in the real world is hard

But: Pretty when it works...

[1] R. Grandia, **A. J. Taylor**, M. Hutter, A. D. Ames, "Multi-Layered Safety for Legged Robotics via Control Barrier Functions and Model Predictive Control", 2020.

Claim: Need to Bridge the Gap

Theorems & Proofs

Experimental Realization

Contributions

- Framework for achieving safety of sampled-data systems via Control Barrier Functions (CBFs) and approximate discrete time models
- Definition of **practical safety** analogous to that of practical stability for sampled-data systems
- Analysis of relationship between a CBF and an approximate discrete time model that yields **convex optimization-based** controllers

System Dynamics

Mathematical Model

System Dynamics

Equations of Motion $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u}$ $\mathbf{x} \in \mathbb{R}^n \quad \mathbf{u} \in \mathbb{R}^m$

 $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n \quad \mathbf{g}: \mathbb{R}^n \to \mathbb{R}^{n \times m}$

Assumptions

 \mathbf{f}, \mathbf{g} locally Lipschitz continuous

System Model

Mathematical Model

System Dynamics

Equations of Motion $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u}$ $\mathbf{x} \in \mathbb{R}^n \quad \mathbf{u} \in \mathbb{R}^m$ $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n \quad \mathbf{g}: \mathbb{R}^n \to \mathbb{R}^{n \times m}$ Assumptions **f**, **g** locally Lipschitz continuous **Closed-Loop Solutions** $\mathbf{k}(\mathbf{x}):\mathbb{R}^n\to\mathbb{R}^m$ $\mathbf{x}_0 \in \mathbb{R}^n \qquad \boldsymbol{\varphi} : \mathbb{R}_{>0} \to \mathbb{R}^n$ $\dot{\boldsymbol{\varphi}}(t) = \mathbf{f}(\boldsymbol{\varphi}(t)) + \mathbf{g}(\boldsymbol{\varphi}(t))\mathbf{k}(\boldsymbol{\varphi}(t))$ $\boldsymbol{\varphi}(0) = \mathbf{x}_0$

 $\psi_{r,h} \qquad \psi_{w} \qquad \psi_{w} \qquad \psi_{w} \qquad \psi_{w} \qquad \psi_{h} \qquad \psi_$

System Model

Mathematical Model

Barrier Functions (BFs)

Barrier Functions (BFs)

Based Quadratic Programs for Safety Critical Systems", 2017.

Andrew J. Taylor 7

Barrier Functions (BFs)

Andrew J. Taylor 7

Control Barrier Functions (CBFs)

Control Barrier Functions (CBFs)

[2] A. Ames, X. Xu, J. Grizzle, P. Tabuada, "Control Barrier Function Based Quadratic Programs for Safety Critical Systems", 2017.

Control Barrier Functions (CBFs)

 $\begin{aligned} & \text{Control Barrier Function}^{[2]} \\ & \sup_{\mathbf{u} \in \mathbb{R}^m} \dot{h}(\mathbf{x}, \mathbf{u}) > -\alpha(h(\mathbf{x})) \text{ for all } \mathbf{x} \in \mathbb{R}^n \\ & \text{CBF Quadratic Program}^{[2]} \\ & \mathbf{k}(\mathbf{x}) = \underset{\mathbf{u} \in \mathbb{R}^m}{\operatorname{argmin}} \|\mathbf{u} - \mathbf{k}_{\operatorname{nom}}(\mathbf{x})\|_2^2 \\ & \text{ s.t. } \dot{h}(\mathbf{x}, \mathbf{u}) \ge -\alpha(h(\mathbf{x})) \end{aligned}$

How are these controllers implemented?

[2] A. Ames, X. Xu, J. Grizzle, P. Tabuada, "Control Barrier Function Based Quadratic Programs for Safety Critical Systems", 2017.

Caltech

Sample-and-Hold

$$\mathbf{u}(t) = \mathbf{k}(\mathbf{x}(t_i)) \text{ for all } t \in [t_i, t_{i+1})$$
$$t_{i+1} - t_i = T$$

Caltech

Sample-and-Hold

 $---\mathbf{u}(t) = \mathbf{k}(\mathbf{x}(t_i)) \text{ for all } t \in [t_i, t_{i+1})$ $t_{i+1} - t_i = T$

Recent Work

[3] A. Ghaffari, I. Abel, D. Ricketts, S. Lerner, M. Krstić, "Safety Verification Using Barrier Certificates with Application to Double Integrator with Input Saturation and Zero-Order Hold", 2018.

[4] W. S. Cortez, D. Oetomo, C. Manzie, P. Choong, "Control Barrier Functions for Mechanical Systems: Theory and Application to Robotic Grasping", 2021.

[5] J. Breeden, K. Garg, D. Panagou, "Control Barrier Functions in Sampled-Data Systems", 2021.

[6] J. Usevitch, D. Panagou, "Adversarial Resilience for Sampled-Data Systems Using Control Barrier Function Methods", 2021.

[7] L. Niu, H. Zhang, A. Clark, "Safety-Critical Control Synthesis for Unknown Sampled-Data Systems via Control Barrier Functions", 2021.

Caltech

Sample-and-Hold

 $---\mathbf{u}(t) = \mathbf{k}(\mathbf{x}(t_i)) \text{ for all } t \in [t_i, t_{i+1})$ $t_{i+1} - t_i = T$

Recent Work

[3] A. Ghaffari, I. Abel, D. Ricketts, S. Lerner, M. Krstić, "Safety Verification Using Barrier Certificates with Application to Double Integrator with Input Saturation and Zero-Order Hold", 2018.
[4] W. S. Cortez, D. Oetomo, C. Manzie, P. Choong, "Control Barrier

Functions for Mechanical Systems: Theory and Application to Robotic Grasping", 2021. [5] J. Breeden, K. Garg, D. Panagou, "Control Barrier Functions in

[5] J. Breeden, K. Garg, D. Panagou, "Control Barrier Functions in Sampled-Data Systems", 2021.

[6] J. Usevitch, D. Panagou, "Adversarial Resilience for Sampled-Data Systems Using Control Barrier Function Methods", 2021.

[7] L. Niu, H. Zhang, A. Clark, "Safety-Critical Control Synthesis for Unknown Sampled-Data Systems via Control Barrier Functions", 2021.

Emulation Approach^[8]

$$\begin{aligned} \mathbf{k}(\mathbf{x}) &= \operatorname*{argmin}_{\mathbf{u} \in \mathbb{R}^m} \|\mathbf{u} - \mathbf{k}_{\operatorname{nom}}(\mathbf{x})\|_2^2 \\ & \text{s.t. } \dot{h}(\mathbf{x}, \mathbf{u}) \geq -\alpha(h(\mathbf{x})) + \phi(T) \end{aligned}$$

Sample-and-Hold $\mathbf{u}(t) = \mathbf{k}(\mathbf{x}(t_i)) \text{ for all } t \in [t_i, t_{i+1})$

 $t_{i+1} - t_i = T$

Recent Work

[3] A. Ghaffari, I. Abel, D. Ricketts, S. Lerner, M. Krstić, "Safety Verification Using Barrier Certificates with Application to Double Integrator with Input Saturation and Zero-Order Hold", 2018.
[4] W. S. Cortez, D. Oetomo, C. Manzie, P. Choong, "Control Barrier Functions for Mechanical Systems: Theory and Application to Robotic

Grasping", 2021.

[5] J. Breeden, K. Garg, D. Panagou, "Control Barrier Functions in Sampled-Data Systems", 2021.

[6] J. Usevitch, D. Panagou, "Adversarial Resilience for Sampled-Data Systems Using Control Barrier Function Methods", 2021.

[7] L. Niu, H. Zhang, A. Clark, "Safety-Critical Control Synthesis for Unknown Sampled-Data Systems via Control Barrier Functions", 2021.

Emulation Approach^[8]

$$\begin{split} \mathbf{k}(\mathbf{x}) &= \operatorname*{argmin}_{\mathbf{u} \in \mathbb{R}^m} \|\mathbf{u} - \mathbf{k}_{\operatorname{nom}}(\mathbf{x})\|_2^2 \\ & \text{s.t.} \ \dot{h}(\mathbf{x}, \mathbf{u}) \geq -\alpha(h(\mathbf{x})) + \phi(T) \end{split}$$

Strong theoretical guarantees on inter-sample behavior

[8] S. Monaco, D. Normand-Cyrot, "Advanced Tools for Nonlinear Sampled-Data Systems' Analysis and Control", 2007.

$$\phi(T) = a(e^{bT} - 1)$$

$$a, b \text{ Lipschitz based}$$

$$\begin{bmatrix} 7 \end{bmatrix} \text{ L. Niu, H. Zhang, A. Clark Unknown Sampled-Data Systems v}$$

$$\mathbf{Emulat}$$

$$\mathbf{k}(\mathbf{x}) = \underset{\mathbf{u} \in \mathbb{R}^{m}}{\operatorname{argmin}} \|\mathbf{u} - \mathbf{k}\|$$

$$\mathbf{x}, \mathbf{t}, \dot{h}(\mathbf{x}, \mathbf{u}) = \underset{\mathbf{x}, \mathbf{t}, \mathbf{t}}{\operatorname{brand}} \|\mathbf{u} - \mathbf{k}\|$$

Sample-and-Hold

 $---\mathbf{u}(t) = \mathbf{k}(\mathbf{x}(t_i)) \text{ for all } t \in [t_i, t_{i+1})$ $t_{i+1} - t_i = T$

Recent Work

[3] A. Ghaffari, I. Abel, D. Ricketts, S. Lerner, M. Krstić, "Safety Verification Using Barrier Certificates with Application to Double Integrator with Input Saturation and Zero-Order Hold", 2018.
[4] W. S. Cortez, D. Oetomo, C. Manzie, P. Choong, "Control Barrier Functions for Mechanical Systems: Theory and Application to Robotic Grasping", 2021.
[5] J. Breeden, K. Garg, D. Panagou, "Control Barrier Functions in Sampled-Data Systems", 2021.
[6] J. Usevitch, D. Panagou, "Adversarial Resilience for Sampled-Data Systems Using Control Barrier Function Methods", 2021.
[7] L. Niu, H. Zhang, A. Clark, "Safety-Critical Control Synthesis for Unknown Sampled-Data Systems via Control Barrier Functions", 2021.

Emulation Approach^[8]

$$\mathbf{x}(\mathbf{x}) = \underset{\mathbf{u} \in \mathbb{R}^{m}}{\operatorname{argmin}} \|\mathbf{u} - \mathbf{k}_{\operatorname{nom}}(\mathbf{x})\|_{2}^{2}$$

s.t. $\dot{h}(\mathbf{x}, \mathbf{u}) \ge -\alpha(h(\mathbf{x})) + \phi(T)$

Strong theoretical guarantees on inter-sample behavior

[8] S. Monaco, D. Normand-Cyrot, "Advanced Tools for Nonlinear Sampled-Data Systems' Analysis and Control", 2007.

Caltech

Sample-and-Hold $\mathbf{u}(t) = \mathbf{k}(\mathbf{x}(t_i))$ for all $t \in [t_i, t_{i+1})$ $t_{i+1} - t_i = T$ **Recent Work**

[3] A. Ghaffari, I. Abel, D. Ricketts, S. Lerner, M. Krstić, "Safety Verification Using Barrier Certificates with Application to Double Integrator with Input Saturation and Zero-Order Hold", 2018. [4] W. S. Cortez, D. Oetomo, C. Manzie, P. Choong, "Control Barrier Functions for Mechanical Systems: Theory and Application to Robotic Grasping", 2021. [5] J. Breeden, K. Garg, D. Panagou, "Control Barrier Functions in Sampled-Data Systems", 2021. [6] J. Usevitch, D. Panagou, "Adversarial Resilience for Sampled-Data Systems Using Control Barrier Function Methods", 2021.

[7] L. Niu, H. Zhang, A. Clark, "Safety-Critical Control Synthesis for Unknown Sampled-Data Systems via Control Barrier Functions", 2021.

Emulation Approach^[8]

$$\mathbf{k}(\mathbf{x}) = \underset{\mathbf{u} \in \mathbb{R}^{m}}{\operatorname{argmin}} \|\mathbf{u} - \mathbf{k}_{\operatorname{nom}}(\mathbf{x})\|_{2}^{2}$$

s.t. $\dot{h}(\mathbf{x}, \mathbf{u}) \ge -\alpha(h(\mathbf{x})) + \phi(T)$

Strong theoretical guarantees on inter-sample behavior

Sample-and-Hold $\mathbf{x}(t)$ $\mathbf{x}(t_i)$ $\mathbf{u}(t) = \mathbf{k}(\mathbf{x}(t_i))$ for all $t \in [t_i, t_{i+1})$ $t_{i+1} - t_i = T$ **Discrete State Transitions** $\mathbf{u}(t)$ t_1 t_3 t_2 t_{A} $\mathbf{F}_{T}^{e}(\mathbf{x}, \mathbf{u}) = \mathbf{x} + \int_{0}^{T} [\mathbf{f}(\boldsymbol{\varphi}(\tau)) + \mathbf{g}(\boldsymbol{\varphi}(\tau))\mathbf{u}] d\tau$ t_3 t_2 t_A t_1

Discrete Time Design^[8]

Discrete Time Design^[8]

Discrete Time Design^[8]

Approximate Discrete Model

$$\mathbf{F}_T^a(\mathbf{x},\mathbf{u}) \approx \mathbf{F}_T^e(\mathbf{x},\mathbf{u})$$

Approximate Discrete Model

 $\mathbf{F}_T^a(\mathbf{x}, \mathbf{u}) \approx \mathbf{F}_T^e(\mathbf{x}, \mathbf{u})$

Stability Analysis

[9] D. Nešić, A. Teel, P. V. Kokotović, "Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations", 1999.
[10] D. Nešić, A. Teel, "A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models", 2004.

Approximate Discrete Model

 $\mathbf{F}_T^a(\mathbf{x}, \mathbf{u}) \approx \mathbf{F}_T^e(\mathbf{x}, \mathbf{u})$

Stability Analysis

[9] D. Nešić, A. Teel, P. V. Kokotović, "Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations", 1999.
[10] D. Nešić, A. Teel, "A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models", 2004.

One-Step Consistency

$$\begin{split} \|\mathbf{F}_{T}^{a}(\mathbf{x},\mathbf{u})-\mathbf{F}_{T}^{e}(\mathbf{x},\mathbf{u})\| &\leq T\rho(T) \\ T^{*} \in \mathbb{R}_{>0} \qquad T \in (0,T^{*}) \qquad \rho \in \mathcal{K} \end{split}$$

 $\mathbf{F}_T^a(\mathbf{x}, \mathbf{u}) \approx \mathbf{F}_T^e(\mathbf{x}, \mathbf{u})$

Stability Analysis

[9] D. Nešić, A. Teel, P. V. Kokotović, "Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations", 1999.
[10] D. Nešić, A. Teel, "A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models", 2004.

One-Step Consistency

$$\begin{split} \|\mathbf{F}_{T}^{a}(\mathbf{x},\mathbf{u})-\mathbf{F}_{T}^{e}(\mathbf{x},\mathbf{u})\| &\leq T\rho(T) \\ T^{*} \in \mathbb{R}_{>0} \qquad T \in (0,T^{*}) \qquad \rho \in \mathcal{K} \end{split}$$

 $\mathbf{F}_T^a(\mathbf{x}, \mathbf{u}) \approx \mathbf{F}_T^e(\mathbf{x}, \mathbf{u})$

Stability Analysis

[9] D. Nešić, A. Teel, P. V. Kokotović, "Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations", 1999.
[10] D. Nešić, A. Teel, "A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models", 2004.

One-Step Consistency

$$\begin{split} \|\mathbf{F}_{T}^{a}(\mathbf{x},\mathbf{u}) - \mathbf{F}_{T}^{e}(\mathbf{x},\mathbf{u})\| &\leq T\rho(T) \\ T^{*} \in \mathbb{R}_{>0} \qquad T \in (0,T^{*}) \qquad \rho \in \mathcal{K} \end{split}$$

Euler Approximate Model

$$\mathbf{F}_T^a(\mathbf{x}, \mathbf{u}) = \mathbf{x} + T(\mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u})$$

 $t_2 t_3 t_4 t_5$

 t_1

Practical Stability

Practical Stability^[9]

$$\mathbf{x}_{i+1} = \mathbf{F}_T(\mathbf{x}_i, \mathbf{k}_T(\mathbf{x}_i) \quad i \in \mathbb{Z}_{\geq 0}$$

For each $R \in \mathbb{R}_{>0}$, there exists $T^* \in \mathbb{R}_{>0}$ s.t.
 $T \in (0, T^*) \implies ||\mathbf{x}_i|| \le \beta(||\mathbf{x}_0||, iT) + R$

 $\beta \in \mathcal{KL}$

[9] D. Nešić, A. Teel, P. V. Kokotović, "Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations", 1999.

Practical Stability

[9] D. Nešić, A. Teel, P. V. Kokotović, "Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations", 1999.
Caltech

$$\mathbf{x}_{i+1} = \mathbf{F}_T(\mathbf{x}_i, \mathbf{k}_T(\mathbf{x}_i) \quad i \in \mathbb{Z}_{\geq 0}$$

For each $R \in \mathbb{R}_{>0}$, there exists $T^* \in \mathbb{R}_{>0}$ s.t.
 $T \in (0, T^*) \implies \|\mathbf{x}_i\| \le \beta(\|\mathbf{x}_0\|, iT) + R$

 $\beta \in \mathcal{KL}$

Equi-Lipschitz Lyapunov Function^[9]

 $\alpha_1(\|\mathbf{x}\|) \le V_T(\mathbf{x}) \le \alpha_2(\|\mathbf{x}\|)$ $V_T(\mathbf{F}_T(\mathbf{x}, \mathbf{k}_T(\mathbf{x}))) - V_T(\mathbf{x}) \le -T\alpha_3(\|\mathbf{x}\|)$ $|V_T(\mathbf{x}) - V_T(\mathbf{y})| \le M \|\mathbf{x} - \mathbf{y}\|$ $T^* \in \mathbb{R}_{>0} \qquad T \in (0, T^*) \qquad \alpha_i \in \mathcal{K}$

$$V_T$$
 for $\mathbf{F}_T \implies \mathbf{F}_T$ stable

Practical Stability^[9]

$$\mathbf{x}_{i+1} = \mathbf{F}_T(\mathbf{x}_i, \mathbf{k}_T(\mathbf{x}_i) \quad i \in \mathbb{Z}_{\geq 0}$$

For each $R \in \mathbb{R}_{>0}$, there exists $T^* \in \mathbb{R}_{>0}$ s.t.
 $T \in (0, T^*) \implies \|\mathbf{x}_i\| \le \beta(\|\mathbf{x}_0\|, iT) + R$

 $\beta \in \mathcal{KL}$

Equi-Lipschitz Lyapunov Function^[9]

$$\begin{aligned} \alpha_1(\|\mathbf{x}\|) &\leq V_T(\mathbf{x}) \leq \alpha_2(\|\mathbf{x}\|) \\ V_T(\mathbf{F}_T(\mathbf{x}, \mathbf{k}_T(\mathbf{x}))) - V_T(\mathbf{x}) \leq -T\alpha_3(\|\mathbf{x}\|) \\ |V_T(\mathbf{x}) - V_T(\mathbf{y})| \leq M \|\mathbf{x} - \mathbf{y}\| \\ T^* \in \mathbb{R}_{>0} \qquad T \in (0, T^*) \qquad \alpha_i \in \mathcal{K} \end{aligned}$$

$$V_T$$
 for $\mathbf{F}_T \implies \mathbf{F}_T$ stable

$$\begin{array}{c} V_T \text{ for } \mathbf{F}^a_T \\ + \end{array} \implies \mathbf{F}^e_T \text{ practically stable} \\ \text{One-Step Consistency} \end{array}$$

Design with approximation endows exact system with guarantees!

Caltech

Practical Stability^[9]

$$\mathbf{x}_{i+1} = \mathbf{F}_T(\mathbf{x}_i, \mathbf{k}_T(\mathbf{x}_i) \quad i \in \mathbb{Z}_{\geq 0}$$

For each $R \in \mathbb{R}_{>0}$, there exists $T^* \in \mathbb{R}_{>0}$ s.t.
 $T \in (0, T^*) \implies ||\mathbf{x}_i|| \le \beta(||\mathbf{x}_0||, iT) + R$

 $\beta\in\mathcal{KL}$

Equi-Lipschitz Lyapunov Function^[9]

$$\alpha_1(\|\mathbf{x}\|) \le V_T(\mathbf{x}) \le \alpha_2(\|\mathbf{x}\|)$$
$$V_T(\mathbf{F}_T(\mathbf{x}, \mathbf{k}_T(\mathbf{x}))) - V_T(\mathbf{x}) \le -T\alpha_3(\|\mathbf{x}\|)$$
$$|V_T(\mathbf{x}) - V_T(\mathbf{y})| \le M \|\mathbf{x} - \mathbf{y}\|$$
$$T^* \in \mathbb{R}_{>0} \qquad T \in (0, T^*) \qquad \alpha_i \in \mathcal{K}$$

$$V_T$$
 for $\mathbf{F}_T \implies \mathbf{F}_T$ stable

$$\begin{array}{c} V_T \text{ for } \mathbf{F}^a_T \\ + \end{array} \implies \mathbf{F}^e_T \text{ practically stable} \\ \text{One-Step Consistency} \end{array}$$

- 1. What is an appropriate definition of **practical safety**?
- 2. How will practical safety connect with the notion of a **sampled**-**data** Barrier Function?

3. What sort of approximate discrete transition maps should we use with sampled-data Control Barrier Functions?

Sampled-Data Forward Invariance

 \mathcal{C} forward invariant for $(\mathbf{k}_T, \mathbf{F}_T)$ if $\mathbf{x}_0 \in \mathcal{C} \implies \mathbf{x}_i \in \mathcal{C} \quad i \in \mathbb{Z}_{>0}$

Sampled-Data Barrier Function Candidate

$$\{h_T \mid T \in \mathbb{R}_{>0}\}$$

Sampled-Data Barrier Function Candidate

$$\{h_T \mid T \in \mathbb{R}_{>0}\}\$$
$$T^* \in \mathbb{R}_{>0} \quad \alpha \in \mathcal{K}^{e}_{\infty} \quad \epsilon, M \in \mathbb{R}_{>0}$$

Practical Safety Result

Theorem 16. Consider a set $C \subseteq \mathbb{R}^n$ and a family of controllers $\{\mathbf{k}_T \mid T \in I\}$. Suppose that:

- 1) There exists a family of Sampled-Data Barrier Functions on C for a family $\{(\mathbf{k}_T, \mathbf{F}_T) \mid T \in I\}$.
- 2) There exists an $\varepsilon' \in \mathbb{R}_{>0}$ such that the family $\{(\mathbf{k}_T, \mathbf{F}_T) \mid T \in I\}$ is one-step consistent with the exact family $\{(\mathbf{k}_T, \mathbf{F}_T^e) \mid T \in I\}$ over the set $\mathcal{C} \oplus \overline{B}_{\varepsilon'}$.

Then the exact family $\{(\mathbf{k}_T, \mathbf{F}_T^e) \mid T \in I\}$ is practically safe with respect to \mathcal{C} .

Practical Safety Result

Theorem 16. Consider a set $C \subseteq \mathbb{R}^n$ and a family of controllers $\{\mathbf{k}_T \mid T \in I\}$. Suppose that:

- 1) There exists a family of Sampled-Data Barrier Functions on C for a family $\{(\mathbf{k}_T, \mathbf{F}_T) \mid T \in I\}$.
- 2) There exists an $\varepsilon' \in \mathbb{R}_{>0}$ such that the family $\{(\mathbf{k}_T, \mathbf{F}_T) \mid T \in I\}$ is one-step consistent with the exact family $\{(\mathbf{k}_T, \mathbf{F}_T^e) \mid T \in I\}$ over the set $\mathcal{C} \oplus \overline{B}_{\varepsilon'}$. Then the exact family $\{(\mathbf{k}_T, \mathbf{F}_T^e) \mid T \in I\}$ is practically safe

with respect to C.

Designs using discrete approximation provide theoretical safety guarantees

Sampled-Data Barrier Function Candidate $h_T(\mathbf{x}) = x_1$

Sampled-Data Barrier Function Candidate $h_T(\mathbf{x}) = x_1$

Input does not appear!

2nd Order Approximation $\mathbf{F}_{T}^{a,2}(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} x_1 + Tx_2 + \frac{1}{2}T^2u \\ x_2 + Tu \end{bmatrix}$

Input does not appear!

Input does not appear!

Input does not appear!

Input appears!

Runge-Kutta Approximation

Runge-Kutta Approximation
$$\mathbf{F}_T^{a,p}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$$
 $p \in \mathbb{N}$ $\mathbf{F}_T^{a,p}(\mathbf{x}, \mathbf{u}) = \mathbf{x} + T \sum_{i=1}^p b_i (\mathbf{f}(\mathbf{z}_i) + \mathbf{g}(\mathbf{z}_i)\mathbf{u})$ $\mathbf{z}_i = \mathbf{x} + T \sum_{j=1}^{i-1} a_{i,j} (\mathbf{f}(\mathbf{z}_j) + \mathbf{g}(\mathbf{z}_j)\mathbf{u})$ $\mathbf{z}_1 = \mathbf{x}$ $b_1, \dots, b_p \in \mathbb{R}_{\geq 0}$ $\sum_{i=1}^p b_i = 1$ $a_{i,j} \in \mathbb{R}$

Runge-Kutta Approximation

$$\begin{aligned} \mathbf{F}_{T}^{a,p} : \mathbb{R}^{n} \times \mathbb{R}^{m} \to \mathbb{R}^{n} \quad p \in \mathbb{N} \\ \mathbf{F}_{T}^{a,p}(\mathbf{x}, \mathbf{u}) &= \mathbf{x} + T \sum_{i=1}^{p} b_{i}(\mathbf{f}(\mathbf{z}_{i}) + \mathbf{g}(\mathbf{z}_{i})\mathbf{u}) \\ \mathbf{z}_{i} &= \mathbf{x} + T \sum_{j=1}^{i-1} a_{i,j}(\mathbf{f}(\mathbf{z}_{j}) + \mathbf{g}(\mathbf{z}_{j})\mathbf{u}) \\ \mathbf{z}_{1} &= \mathbf{x} \\ b_{1}, \dots, b_{p} \in \mathbb{R}_{\geq 0} \sum_{i=1}^{p} b_{i} = 1 \\ a_{i,j} \in \mathbb{R} \end{aligned}$$

$$\begin{split} & \textbf{One-Step Consistency} \\ \|\mathbf{F}_{T}^{e}(\mathbf{x}, \mathbf{k}_{T}(\mathbf{x})) - \mathbf{F}_{T}^{a, p}(\mathbf{x}, \mathbf{k}_{T}(\mathbf{x}))\| \leq T\rho(T) \\ & T^{*} \in I \quad T \in (0, T^{*}) \quad \rho \in \mathcal{K}_{\infty} \end{split}$$

Runge-Kutta Approximation

Runge-Kutta Approximation
$$\mathbf{F}_T^{a,p}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$$
 $p \in \mathbb{N}$ $\mathbf{F}_T^{a,p}(\mathbf{x}, \mathbf{u}) = \mathbf{x} + T \sum_{i=1}^p b_i(\mathbf{f}(\mathbf{z}_i) + \mathbf{g}(\mathbf{z}_i)\mathbf{u})$ $\mathbf{z}_i = \mathbf{x} + T \sum_{j=1}^{i-1} a_{i,j}(\mathbf{f}(\mathbf{z}_j) + \mathbf{g}(\mathbf{z}_j)\mathbf{u})$ $\mathbf{z}_1 = \mathbf{x}$ $b_1, \dots, b_p \in \mathbb{R}_{\geq 0}$ $\sum_{i=1}^p b_i = 1$ $a_{i,j} \in \mathbb{R}$

Preservation of Convexity

Preservation of Convexity

 $\widetilde{h}_T : \mathbb{R}^q \to \mathbb{R} \qquad q \le n$ $h_T(\mathbf{x}) = \widetilde{h}_T(x_1, \dots, x_q)$ $\widetilde{h}_T \text{ concave with respect to last argument}$

Preservation of Convexity

Partially Concave Barrier Function

 $\widetilde{h}_T : \mathbb{R}^q \to \mathbb{R} \qquad q \le n$ $h_T(\mathbf{x}) = \widetilde{h}_T(x_1, \dots, x_q)$ $\widetilde{h}_T \text{ concave with respect to last argument}$

Runge-Kutta Approximation Order

 $\mathbf{F}_{T}^{a,p}$ Runge-Kutta approximation of order p = n - q + 1
Preservation of Convexity

$\begin{aligned} & \phi_T : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \\ & \phi_T(\mathbf{x}, \mathbf{u}) = -h_T(\mathbf{F}_T^{a, p}(\mathbf{x}, \mathbf{u})) + h_T(\mathbf{x}) - T\alpha(h_T(\mathbf{x})) \\ & \phi_T \text{ is convex with respect to its second argument} \end{aligned}$

Andrew J. Taylor 19

Preservation of Convexity

Preservation of Convexity

Inverted Pendulum

Inverted Pendulum

p = 2

Caltech

Inverted Pendulum

Andrew J. Taylor 22

0.75

1.00

Double Inverted Pendulum

Safety Violations

Andrew J. Taylor 24

Conclusions

- Framework for achieving safety of sampled-data systems via Control Barrier Functions (CBFs) and approximate discrete time models
- Definition of **practical safety** analogous to that of practical stability for sampled-data systems
- Analysis of relationship between a CBF and an approximate discrete time model that yields convex optimizationbased controllers

Thank You!

Safety of Sampled-Data Systems with Control Barrier Functions via Approximate Discrete Time Models

Andrew J. TaylorVictor D. DorobantuRyan K. CosnerYisong YueAaron D. Ames