

Safe Backstepping with Control Barrier Functions

Andrew J. TaylorPio OngTamas G. MolnárAaron D. Ames

Computing and Mathematical Sciences California Institute of Technology

December 8th, 2022 Control & Decision Conference (CDC) 2022

Control for complex systems is hard

But: Pretty when it works...

[1] R. Grandia, **A. J. Taylor**, M. Hutter, A. D. Ames, "Multi-Layered Safety for Legged Robotics via Control Barrier Functions and Model Predictive Control", 2020.

Claim: Need to build constructive design tools

Theorems & Proofs

Experimental Realization

Contributions

- Framework for achieving safety of higher-order systems by unifying classical Lyapunov backstepping with Control Barrier Functions
- Constructive tool for **synthesizing** Control Barrier Functions for higher-order systems
- Design of **stable and safe** nonlinear controllers through joint Lyapunov and Barrier backstepping

System Dynamics

Mathematical Model

System Dynamics

Equations of Motion

 $\begin{aligned} \dot{\mathbf{x}} &= \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u} \\ \mathbf{x} &\in \mathbb{R}^n \quad \mathbf{u} \in \mathbb{R}^m \\ \mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n \quad \mathbf{g} : \mathbb{R}^n \to \mathbb{R}^{n \times m} \end{aligned}$

Assumptions

 \mathbf{f}, \mathbf{g} locally Lipschitz continuous

System Model

Mathematical Model

System Dynamics

Equations of Motion $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u}$ $\mathbf{x} \in \mathbb{R}^n \quad \mathbf{u} \in \mathbb{R}^m$ $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n \quad \mathbf{g}: \mathbb{R}^n \to \mathbb{R}^{n \times m}$ Assumptions **f**, **g** locally Lipschitz continuous **Closed-Loop Solutions** $\mathbf{k}(\mathbf{x}):\mathbb{R}^n\to\mathbb{R}^m$ $\mathbf{x}_0 \in \mathbb{R}^n \qquad \boldsymbol{\varphi} : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ $\dot{\boldsymbol{\varphi}}(t) = \mathbf{f}(\boldsymbol{\varphi}(t)) + \mathbf{g}(\boldsymbol{\varphi}(t))\mathbf{k}(\boldsymbol{\varphi}(t))$ $\boldsymbol{\varphi}(0) = \mathbf{x}_0$

Mathematical Model

System Model

Barrier Functions (BFs)

Barrier Functions (BFs)

Based Quadratic Programs for Safety Critical Systems", 2017.

Barrier Functions (BFs)

Based Quadratic Programs for Safety Critical Systems", 2017.

Control Barrier Functions (CBFs)

Control Barrier Functions (CBFs)

[2] A. Ames, X. Xu, J. Grizzle, P. Tabuada, "Control Barrier Function Based Quadratic Programs for Safety Critical Systems", 2017.

Control Barrier Functions (CBFs)

How do we work with higher-order systems?

[2] A. Ames, X. Xu, J. Grizzle, P. Tabuada, "Control Barrier Function Based Quadratic Programs for Safety Critical Systems", 2017.

Single Cascade System
$egin{aligned} \dot{\mathbf{x}} &= \mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) \boldsymbol{\xi} \ \dot{\boldsymbol{\xi}} &= \mathbf{f}_1(\mathbf{x}, \boldsymbol{\xi}) + \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) \mathbf{u} \end{aligned}$
$\mathbf{x} \in \mathbb{R}^{n} \qquad \boldsymbol{\xi} \in \mathbb{R}^{p} \qquad \mathbf{u} \in \mathbb{R}^{m}$ $\mathbf{f}_{0} : \mathbb{R}^{n} \to \mathbb{R}^{n} \qquad \mathbf{g}_{0} : \mathbb{R}^{n} \to \mathbb{R}^{n \times p}$ $\mathbf{f}_{1} : \mathbb{R}^{n} \times \mathbb{R}^{p} \to \mathbb{R}^{p} \qquad \mathbf{g}_{1} : \mathbb{R}^{n} \times \mathbb{R}^{p} \to \mathbb{R}^{p \times m}$

Single Cascade System
$\dot{\mathbf{x}} = \mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\boldsymbol{\xi}$
$oldsymbol{\xi} = \mathbf{f}_1(\mathbf{x},oldsymbol{\xi}) + \mathbf{g}_1(\mathbf{x},oldsymbol{\xi})\mathbf{u}$
$\mathbf{x} \in \mathbb{R}^n$ $\boldsymbol{\xi} \in \mathbb{R}^p$ $\mathbf{u} \in \mathbb{R}^m$
$\mathbf{f}_0: \mathbb{R}^n \to \mathbb{R}^n \qquad \mathbf{g}_0: \mathbb{R}^n \to \mathbb{R}^{n \times p}$
$\mathbf{f}_1: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p \ \mathbf{g}_1: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^{p \times m}$
Assumptions
$\mathbf{f}_0, \mathbf{g}_0, \mathbf{f}_1, \mathbf{g}_1$ locally Lipschitz continuous
$\mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi})$ pseudo-invertible for each $(\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p$

Single Cascade System
$egin{aligned} \dot{\mathbf{x}} &= \mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) oldsymbol{\xi} \ \dot{oldsymbol{\xi}} &= \mathbf{f}_1(\mathbf{x}, oldsymbol{\xi}) + \mathbf{g}_1(\mathbf{x}, oldsymbol{\xi}) \mathbf{u} \end{aligned}$
$\mathbf{x} \in \mathbb{R}^{n} \qquad \mathbf{\xi} \in \mathbb{R}^{p} \qquad \mathbf{u} \in \mathbb{R}^{m}$ $\mathbf{f}_{0} : \mathbb{R}^{n} \to \mathbb{R}^{n} \qquad \mathbf{g}_{0} : \mathbb{R}^{n} \to \mathbb{R}^{n \times p}$ $\mathbf{f}_{1} : \mathbb{R}^{n} \times \mathbb{R}^{p} \to \mathbb{R}^{p} \qquad \mathbf{g}_{1} : \mathbb{R}^{n} \times \mathbb{R}^{p} \to \mathbb{R}^{p \times m}$
Assumptions
$\begin{aligned} \mathbf{f}_0, \mathbf{g}_0, \mathbf{f}_1, \mathbf{g}_1 \text{ locally Lipschitz continuous} \\ \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) \text{ pseudo-invertible} \\ \text{ for each } (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p \end{aligned}$

Top-Level Safe Set

$$\mathcal{C}_0 = \{ \mathbf{x} \in \mathbb{R}^n \mid h_0(\mathbf{x}) \ge 0 \}$$

 $h_0: \mathbb{R}^n \to \mathbb{R}$, twice continuously differentiable

Cascaded Systems

Single Cascade System
$egin{aligned} \dot{\mathbf{x}} &= \mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) oldsymbol{\xi} \ \dot{oldsymbol{\xi}} &= \mathbf{f}_1(\mathbf{x},oldsymbol{\xi}) + \mathbf{g}_1(\mathbf{x},oldsymbol{\xi}) \mathbf{u} \end{aligned}$
$\mathbf{x} \in \mathbb{R}^n$ $\mathbf{\xi} \in \mathbb{R}^p$ $\mathbf{u} \in \mathbb{R}^m$
$\mathbf{f}_0: \mathbb{R}^n \to \mathbb{R}^n \qquad \mathbf{g}_0: \mathbb{R}^n \to \mathbb{R}^{n \times p}$
$ \mathbf{f}_1 : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p \ \mathbf{g}_1 : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^{p \times m} $
Assumptions
$\mathbf{f}_0, \mathbf{g}_0, \mathbf{f}_1, \mathbf{g}_1$ locally Lipschitz continuous $\mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi})$ pseudo-invertible for each $(\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p$

Cascaded Systems

Single Cascade System
$egin{aligned} \dot{\mathbf{x}} &= \mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) oldsymbol{\xi} \ \dot{oldsymbol{\xi}} &= \mathbf{f}_1(\mathbf{x},oldsymbol{\xi}) + \mathbf{g}_1(\mathbf{x},oldsymbol{\xi}) \mathbf{u} \end{aligned}$
$\mathbf{x} \in \mathbb{R}^{n} \qquad \boldsymbol{\xi} \in \mathbb{R}^{p} \qquad \mathbf{u} \in \mathbb{R}^{m}$ $\mathbf{f}_{0} : \mathbb{R}^{n} \to \mathbb{R}^{n} \qquad \mathbf{g}_{0} : \mathbb{R}^{n} \to \mathbb{R}^{n \times p}$ $\mathbf{f}_{1} : \mathbb{R}^{n} \times \mathbb{R}^{p} \to \mathbb{R}^{p} \qquad \mathbf{g}_{1} : \mathbb{R}^{n} \times \mathbb{R}^{p} \to \mathbb{R}^{p \times m}$
Assumptions
$ \begin{aligned} \mathbf{f}_0, \mathbf{g}_0, \mathbf{f}_1, \mathbf{g}_1 \text{ locally Lipschitz continuous} \\ \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) \text{ pseudo-invertible} \\ \text{ for each } (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p \end{aligned} $

9

High-Order Control Barrier Functions

[3] Q. Nguyen, K. Sreenath, "Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints", 2016.
[4] W. Xiao, C. Belta, "Control Barrier Functions for Systems with High Relative Degree", 2021.
[5] W. Xiao, C. Belta, "High Order Control Barrier Functions", 2021.
[6] J. Breeden, D. Panagou, "High Relative Degree Control Barrier Functions Under Input Constraints", 2021.

High-Order Control Barrier Functions

[3] Q. Nguyen, K. Sreenath, "Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints", 2016.
[4] W. Xiao, C. Belta, "Control Barrier Functions for Systems with High Relative Degree", 2021.
[5] W. Xiao, C. Belta, "High Order Control Barrier Functions", 2021.
[6] J. Breeden, D. Panagou, "High Relative Degree Control Barrier Functions Under Input Constraints",

2021.

Extended Barrier

 $h_1(\mathbf{x}, \boldsymbol{\xi}) = \dot{h}_0(\mathbf{x}, \boldsymbol{\xi}) + \alpha_0(h_0(\mathbf{x}))$ $\mathcal{C}_1 = \{ (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p \mid h_1(\mathbf{x}, \boldsymbol{\xi}) \ge 0 \}$

High-Order Control Barrier Functions

[3] Q. Nguyen, K. Sreenath, "Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints", 2016.
[4] W. Xiao, C. Belta, "Control Barrier Functions for Systems with High Relative Degree", 2021.
[5] W. Xiao, C. Belta, "High Order Control Barrier Functions", 2021.
[6] J. Breeden, D. Panagou, "High Relative Degree Control Barrier Functions Under Input Constraints",

2021.

Extended Barrier

$$h_1(\mathbf{x}, \boldsymbol{\xi}) = \dot{h}_0(\mathbf{x}, \boldsymbol{\xi}) + \alpha_0(h_0(\mathbf{x}))$$
$$\mathcal{C}_1 = \{ (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p \mid h_1(\mathbf{x}, \boldsymbol{\xi}) \ge 0 \}$$

High-Order Control Barrier Functions

[3] Q. Nguyen, K. Sreenath, "Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints", 2016.
[4] W. Xiao, C. Belta, "Control Barrier Functions for Systems with High Relative Degree", 2021.
[5] W. Xiao, C. Belta, "High Order Control Barrier Functions", 2021.
[6] J. Breeden, D. Panagou, "High Relative Degree Control Barrier Functions Under Input Constraints",

Extended Barrier

2021.

$$h_1(\mathbf{x}, \boldsymbol{\xi}) = \dot{h}_0(\mathbf{x}, \boldsymbol{\xi}) + \alpha_0(h_0(\mathbf{x}))$$
$$\mathcal{C}_1 = \{ (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p \mid h_1(\mathbf{x}, \boldsymbol{\xi}) \ge 0 \}$$

[3] Q. Nguyen, K. Sreenath, "Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints", 2016.
[4] W. Xiao, C. Belta, "Control Barrier Functions for Systems with High Relative Degree", 2021.
[5] W. Xiao, C. Belta, "High Order Control Barrier Functions", 2021.
[6] J. Breeden, D. Panagou, "High Relative Degree Control Barrier Functions Under Input Constraints",

Extended Barrier

2021.

$$h_1(\mathbf{x}, \boldsymbol{\xi}) = \dot{h}_0(\mathbf{x}, \boldsymbol{\xi}) + \alpha_0(h_0(\mathbf{x}))$$
$$\mathcal{C}_1 = \{ (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p \mid h_1(\mathbf{x}, \boldsymbol{\xi}) \ge 0 \}$$

Barrier Time Derivative

$$\begin{split} \dot{h}_1(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) &= \frac{\partial h_1}{\partial \mathbf{x}}(\mathbf{x}, \boldsymbol{\xi}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) \boldsymbol{\xi} \right) \\ &+ \frac{\partial h_1}{\partial \boldsymbol{\xi}}(\mathbf{x}, \boldsymbol{\xi}) \left(\mathbf{f}_1(\mathbf{x}, \boldsymbol{\xi}) + \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) \mathbf{u} \right) \end{split}$$

[3] Q. Nguyen, K. Sreenath, "Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints", 2016.
[4] W. Xiao, C. Belta, "Control Barrier Functions for Systems with High Relative Degree", 2021.
[5] W. Xiao, C. Belta, "High Order Control Barrier Functions", 2021.
[6] J. Breeden, D. Panagou, "High Relative Degree Control Barrier Functions Under Input Constraints",

Extended Barrier

2021.

$$h_1(\mathbf{x}, \boldsymbol{\xi}) = \dot{h}_0(\mathbf{x}, \boldsymbol{\xi}) + \alpha_0(h_0(\mathbf{x}))$$
$$\mathcal{C}_1 = \{ (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p \mid h_1(\mathbf{x}, \boldsymbol{\xi}) \ge 0 \}$$

 c_1 c_0 x_1

Barrier Time Derivative

$$\begin{split} \dot{h}_1(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) &= \frac{\partial h_1}{\partial \mathbf{x}}(\mathbf{x}, \boldsymbol{\xi}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) \boldsymbol{\xi} \right) \\ &+ \frac{\partial h_1}{\partial \boldsymbol{\xi}}(\mathbf{x}, \boldsymbol{\xi}) \left(\mathbf{f}_1(\mathbf{x}, \boldsymbol{\xi}) + \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) \mathbf{u} \right) \end{split}$$

Andrew J. Taylor 10

$$h_1(\mathbf{x}, \boldsymbol{\xi}) = \dot{h}_0(\mathbf{x}, \boldsymbol{\xi}) + \alpha_0(h_0(\mathbf{x}))$$
$$\mathcal{C}_1 = \{ (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p \mid h_1(\mathbf{x}, \boldsymbol{\xi}) \ge 0 \}$$

$$\mathbf{k}(\mathbf{x}, \boldsymbol{\xi}) = \underset{\mathbf{u} \in \mathbb{R}^{m}}{\operatorname{argmin}} \|\mathbf{u} - \mathbf{k}_{\operatorname{nom}}(\mathbf{x}, \boldsymbol{\xi})\|_{2}^{2}$$

s.t. $\dot{h}_{1}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) \geq -\alpha_{1}(h_{1}(\mathbf{x}, \boldsymbol{\xi}))$

Andrew J. Taylor 10

Control Barrier Function Condition

$$\sup_{\mathbf{u} \in \mathbb{R}^m} \dot{h}_1(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) > -\alpha_1(h_1(\mathbf{x}, \boldsymbol{\xi}))$$

Control Barrier Function Condition $\sup_{\mathbf{u} \in \mathbb{R}^m} \dot{h}_1(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) > -\alpha_1(h_1(\mathbf{x}, \boldsymbol{\xi}))$ Is this satisfied?

Relative Degree Assumption

$$\frac{\partial h_1}{\partial \boldsymbol{\xi}}(\mathbf{x}, \boldsymbol{\xi}) \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) \neq \mathbf{0} \text{ for all } (\mathbf{x}, \boldsymbol{\xi}) \in \mathbb{R}^n \times \mathbb{R}^p$$

 $\begin{array}{c} \textbf{Control Barrier Function Condition} \\ \sup_{\mathbf{u} \in \mathbb{R}^m} \dot{h}_1(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) > -\alpha_1(h_1(\mathbf{x}, \boldsymbol{\xi})) \end{array} \textbf{Is this satisfied?}$

Control Barrier Function Condition $\sup_{\mathbf{u} \in \mathbb{R}^{m}} \dot{h}_{1}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) > -\alpha_{1}(h_{1}(\mathbf{x}, \boldsymbol{\xi}))$ Is this satisfied?

$$\begin{array}{l} \hline & \textbf{Alternative CBF Condition} \\ \hline & \frac{\partial h_1}{\partial \boldsymbol{\xi}}(\mathbf{x}, \boldsymbol{\xi}) \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) = \mathbf{0} \implies \frac{\partial h_1}{\partial \mathbf{x}}(\mathbf{x}, \boldsymbol{\xi}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) \boldsymbol{\xi} \right) \\ & \quad + \frac{\partial h_1}{\partial \boldsymbol{\xi}}(\mathbf{x}, \boldsymbol{\xi}) \mathbf{f}_1(\mathbf{x}, \boldsymbol{\xi}) > -\alpha_1(h_1(\mathbf{x}, \boldsymbol{\xi})) \end{array}$$

$$\begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \\ \hline \partial h_1 \\ \partial \xi \end{array} (\mathbf{x}, \boldsymbol{\xi}) \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) = \mathbf{0} \end{array} \implies \begin{array}{l} & \begin{array}{l} & \begin{array}{l} \partial h_1 \\ \partial \mathbf{x} \end{array} (\mathbf{x}, \boldsymbol{\xi}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) \boldsymbol{\xi} \right) \\ & + \begin{array}{l} & \begin{array}{l} & \begin{array}{l} \partial h_1 \\ \partial \mathbf{x} \end{array} (\mathbf{x}, \boldsymbol{\xi}) \mathbf{f}_1(\mathbf{x}, \boldsymbol{\xi}) > -\alpha_1(h_1(\mathbf{x}, \boldsymbol{\xi})) \end{array} \end{array} \end{array} \right) \end{array}$$

Can we do something more constructive?

$$\begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \\ \hline \partial h_1 \\ \partial \xi \end{array} (\mathbf{x}, \boldsymbol{\xi}) \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi}) = \mathbf{0} \end{array} \implies \begin{array}{l} & \begin{array}{l} & \begin{array}{l} \partial h_1 \\ \partial \mathbf{x} \end{array} (\mathbf{x}, \boldsymbol{\xi}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x}) \boldsymbol{\xi} \right) \\ & + \begin{array}{l} & \begin{array}{l} \partial h_1 \\ \partial \boldsymbol{\xi} \end{array} (\mathbf{x}, \boldsymbol{\xi}) \mathbf{f}_1(\mathbf{x}, \boldsymbol{\xi}) > -\alpha_1(h_1(\mathbf{x}, \boldsymbol{\xi})) \end{array} \end{array} \end{array} \right) \end{array}$$

Reduced-Order Model Design

Reduced-Order Controller^[7] $\mathbf{k}_0 : \mathbb{R}^n \to \mathbb{R}^p$ $\dot{h}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) \ge -\alpha_0(h(\mathbf{x}))$

Reduced-Order Controller^[7] $\mathbf{k}_0 : \mathbb{R}^n \to \mathbb{R}^p$ $\dot{h}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) \ge -\alpha_0(h(\mathbf{x}))$

Full-Order Controller^[7]

 $\begin{aligned} \mathbf{k}_1 : \mathbb{R}^n \times \mathbb{R}^p &\to \mathbb{R}^m \quad V : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}_{\geq 0} \\ c_1 \| \boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}) \|_2^2 &\leq V(\mathbf{x}, \boldsymbol{\xi}) \leq c_2 \| \boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}) \|_2^2 \\ \dot{V}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{k}_1(\mathbf{x}, \boldsymbol{\xi})) \leq -c_3 V(\mathbf{x}, \boldsymbol{\xi}) \end{aligned}$

[7] T. Molnár, R. Cosner, A. Singletary, W. Ubellacker, A. Ames, "Model-Free Safety-Critical Control for Robotic Systems", 2022.

[7] T. Molnár, R. Cosner, A. Singletary, W. Ubellacker, A. Ames, "Model-Free Safety-Critical Control for Robotic Systems", 2022.

[7] T. Molnár, R. Cosner, A. Singletary, W. Ubellacker, A. Ames, "Model-Free Safety-Critical Control for Robotic Systems", 2022.

Andrew J. Taylor

Equilibrium Point $\mathbf{f}_0(\mathbf{0}) = \mathbf{0} \qquad \mathbf{f}_1(\mathbf{0},\mathbf{0}) = \mathbf{0}$

Equilibrium Point $\mathbf{f}_0(\mathbf{0}) = \mathbf{0} \qquad \mathbf{f}_1(\mathbf{0},\mathbf{0}) = \mathbf{0}$

Top-Level Design

 $\begin{aligned} \mathbf{k}_0 : \mathbb{R}^n \to \mathbb{R}^p, \text{ twice continuously differentiable} \\ V_0 : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \text{ twice continuously differentiable} \\ \gamma_1(\|\mathbf{x}\|) \leq V_0(\mathbf{x}) \leq \gamma_2(\|\mathbf{x}\|) \\ \frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{k}_0(\mathbf{x})\right) \leq -\gamma_3(\|\mathbf{x}\|) \\ \mathbf{k}_0(\mathbf{0}) = \mathbf{0} \quad \gamma_1, \gamma_2, \gamma_3 \in \mathcal{K}_\infty \end{aligned}$

Equilibrium Point $\mathbf{f}_0(\mathbf{0}) = \mathbf{0} \qquad \mathbf{f}_1(\mathbf{0},\mathbf{0}) = \mathbf{0}$

Top-Level Design

 $\begin{aligned} \mathbf{k}_0 : \mathbb{R}^n \to \mathbb{R}^p, \text{ twice continuously differentiable} \\ V_0 : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \text{ twice continuously differentiable} \\ \gamma_1(||\mathbf{x}||) &\leq V_0(\mathbf{x}) \leq \gamma_2(||\mathbf{x}||) \\ \frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{k}_0(\mathbf{x})\right) \leq -\gamma_3(||\mathbf{x}||) \\ \mathbf{k}_0(\mathbf{0}) &= \mathbf{0} \quad \gamma_1, \gamma_2, \gamma_3 \in \mathcal{K}_\infty \end{aligned}$

Composite Lyapunov Function $V(\mathbf{x}, \boldsymbol{\xi}) = V_0(\mathbf{x}) + \frac{1}{2\mu} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))^\top (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))$ $\mu \in \mathbb{R}_{>0}$

Equilibrium Point $\mathbf{f}_0(\mathbf{0}) = \mathbf{0} \qquad \mathbf{f}_1(\mathbf{0},\mathbf{0}) = \mathbf{0}$

Top-Level Design

 $\begin{aligned} \mathbf{k}_0 : \mathbb{R}^n \to \mathbb{R}^p, \text{ twice continuously differentiable} \\ V_0 : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \text{ twice continuously differentiable} \\ \gamma_1(\|\mathbf{x}\|) \leq V_0(\mathbf{x}) \leq \gamma_2(\|\mathbf{x}\|) \\ \frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{k}_0(\mathbf{x})\right) \leq -\gamma_3(\|\mathbf{x}\|) \\ \mathbf{k}_0(\mathbf{0}) = \mathbf{0} \quad \gamma_1, \gamma_2, \gamma_3 \in \mathcal{K}_\infty \end{aligned}$

Composite Lyapunov Function

$$V(\mathbf{x}, \boldsymbol{\xi}) = V_0(\mathbf{x}) + \frac{1}{2\mu} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))^\top (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))$$
$$\mu \in \mathbb{R}_{>0}$$

Structured Low-Level Controller

$$\begin{aligned} \mathbf{k}(\mathbf{x}, \boldsymbol{\xi}) &= \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi})^{\dagger} \left(-\mathbf{f}_1(\mathbf{x}, \boldsymbol{\xi}) + \frac{\partial \mathbf{k}_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\boldsymbol{\xi}) \\ &- \mu \left(\frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{g}_0(\mathbf{x}) \right)^{\top} - \frac{\lambda}{2} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x})) \right) \\ &\lambda \in \mathbb{R}_{>0} \end{aligned}$$

Top-Level Design

 $\begin{aligned} \mathbf{k}_0 : \mathbb{R}^n \to \mathbb{R}^p, \text{ twice continuously differentiable} \\ V_0 : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \text{ twice continuously differentiable} \\ \gamma_1(||\mathbf{x}||) &\leq V_0(\mathbf{x}) \leq \gamma_2(||\mathbf{x}||) \\ \frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x}) \left(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{k}_0(\mathbf{x})\right) \leq -\gamma_3(||\mathbf{x}||) \\ \mathbf{k}_0(\mathbf{0}) &= \mathbf{0} \quad \gamma_1, \gamma_2, \gamma_3 \in \mathcal{K}_\infty \end{aligned}$

Composite Lyapunov Function

$$V(\mathbf{x}, \boldsymbol{\xi}) = V_0(\mathbf{x}) + \frac{1}{2\mu} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))^\top (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))$$
$$\mu \in \mathbb{R}_{>0}$$

$$\begin{split} \textbf{Structured Low-Level Controller} \\ \textbf{k}(\textbf{x}, \boldsymbol{\xi}) &= \textbf{g}_1(\textbf{x}, \boldsymbol{\xi})^{\dagger} \left(-\textbf{f}_1(\textbf{x}, \boldsymbol{\xi}) + \frac{\partial \textbf{k}_0}{\partial \textbf{x}}(\textbf{x})(\textbf{f}_0(\textbf{x}) + \textbf{g}_0(\textbf{x})\boldsymbol{\xi}) \\ &- \mu \left(\frac{\partial V_0}{\partial \textbf{x}}(\textbf{x})\textbf{g}_0(\textbf{x}) \right)^{\top} - \frac{\lambda}{2}(\boldsymbol{\xi} - \textbf{k}_0(\textbf{x})) \right) \end{split}$$

 $\lambda \in \mathbb{R}_{>0}$

Lyapunov Decay

$$\dot{V}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{k}(\mathbf{x}, \boldsymbol{\xi})) \leq -\gamma_3(\|\mathbf{x}\|) - \gamma'_3(\|\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x})\|)$$

Andrew J. Taylor

Lyapunov Decay

 $\dot{V}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{k}(\mathbf{x}, \boldsymbol{\xi})) \leq -\gamma_3(\|\mathbf{x}\|) - \gamma'_3(\|\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x})\|)$

Top-Level Safe Set	Reduced-Order Controller
$\mathcal{C}_0 = \{ \mathbf{x} \in \mathbb{R}^n \mid h_0(\mathbf{x}) \ge 0 \}$	$\begin{aligned} \mathbf{k}_0 : \mathbb{R}^n \to \mathbb{R}^p \\ \dot{h}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) \geq -\alpha_0(h(\mathbf{x})) \end{aligned}$
	α_0 globally Lipschitz

$$\begin{aligned} \mathbf{k}(\mathbf{x}, \boldsymbol{\xi}) &= \mathbf{g}_1(\mathbf{x}, \boldsymbol{\xi})^{\dagger} \Big(-\mathbf{f}_1(\mathbf{x}, \boldsymbol{\xi}) + \frac{\partial \mathbf{k}_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\boldsymbol{\xi}) \\ &+ \mu \Big(\frac{\partial h_0}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{g}_0(\mathbf{x}) \Big)^{\top} - \frac{\lambda}{2} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x})) \Big) \\ &\lambda \geq \mathcal{L}_{\alpha_0} \end{aligned}$$

Strict Top-Level Barrier Function

 $\frac{\partial h_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{k}_0(\mathbf{x})) > -\alpha_0(h_0(\mathbf{x}))$

Construct CBFs for complex systems using CBFs for simple systems!

Constructive Control Barrier Functions

Construct CBFs for complex systems using CBFs for simple systems!

Do not need to use structured controller

Caltech

Multi-Cascade System

$$\begin{aligned} \dot{\boldsymbol{\xi}}_{0} &= \mathbf{f}_{0}(\boldsymbol{\xi}_{0}) + \mathbf{g}_{0,\boldsymbol{\xi}}(\boldsymbol{\xi}_{0})\boldsymbol{\xi}_{1} + \mathbf{g}_{0,\mathbf{u}}(\boldsymbol{\xi}_{0})\mathbf{u}_{0}, \\ \dot{\boldsymbol{\xi}}_{1} &= \mathbf{f}_{1}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1}) + \mathbf{g}_{1,\boldsymbol{\xi}}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1})\boldsymbol{\xi}_{2} + \mathbf{g}_{1,\mathbf{u}}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1})\mathbf{u}_{1}, \\ \vdots \\ \dot{\boldsymbol{\xi}}_{r} &= \mathbf{f}_{r}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\boldsymbol{\xi}_{2},\ldots,\boldsymbol{\xi}_{r}) + \mathbf{g}_{r}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{r})\mathbf{u}_{r}, \\ \boldsymbol{\xi}_{i} \in \mathbb{R}^{p_{i}} \quad \mathbf{z}_{i} = (\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{i}) \in \mathbb{R}^{q_{i}} \quad i = 0,\ldots,r \end{aligned}$$

Caltech

Multi-Cascade System

$$\begin{split} \dot{\boldsymbol{\xi}}_{0} &= \mathbf{f}_{0}(\boldsymbol{\xi}_{0}) + \mathbf{g}_{0,\boldsymbol{\xi}}(\boldsymbol{\xi}_{0})\boldsymbol{\xi}_{1} + \mathbf{g}_{0,\mathbf{u}}(\boldsymbol{\xi}_{0})\mathbf{u}_{0}, \\ \dot{\boldsymbol{\xi}}_{1} &= \mathbf{f}_{1}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1}) + \mathbf{g}_{1,\boldsymbol{\xi}}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1})\boldsymbol{\xi}_{2} + \mathbf{g}_{1,\mathbf{u}}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1})\mathbf{u}_{1}, \\ \vdots \\ \dot{\boldsymbol{\xi}}_{r} &= \mathbf{f}_{r}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\boldsymbol{\xi}_{2},\ldots,\boldsymbol{\xi}_{r}) + \mathbf{g}_{r}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{r})\mathbf{u}_{r}, \\ \boldsymbol{\xi}_{i} \in \mathbb{R}^{p_{i}} \quad \mathbf{z}_{i} = (\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{i}) \in \mathbb{R}^{q_{i}} \quad i = 0,\ldots,r \end{split}$$

Top-Level Safety Design

$$\begin{aligned} \mathcal{C}_0 &= \{ \boldsymbol{\xi}_0 \in \mathbb{R}^{p_0} \mid h_0(\boldsymbol{\xi}_0) \geq 0 \} \\ \frac{\partial h_0}{\partial \boldsymbol{\xi}_0}(\mathbf{z}_0) \left(\mathbf{f}_0(\mathbf{z}_0) + \mathbf{g}_{0,\boldsymbol{\xi}}(\mathbf{z}_0) \mathbf{k}_{0,\boldsymbol{\xi}}(\mathbf{z}_0) \\ &+ \mathbf{g}_{0,\mathbf{u}}(\mathbf{z}_0) \mathbf{k}_{0,\mathbf{u}}(\mathbf{z}_0) \right) \geq -\alpha_0(h_0(\mathbf{z}_0)) \end{aligned}$$

Multi-Cascade System

$$\begin{split} \dot{\boldsymbol{\xi}}_{0} &= \mathbf{f}_{0}(\boldsymbol{\xi}_{0}) + \mathbf{g}_{0,\boldsymbol{\xi}}(\boldsymbol{\xi}_{0})\boldsymbol{\xi}_{1} + \mathbf{g}_{0,\mathbf{u}}(\boldsymbol{\xi}_{0})\mathbf{u}_{0}, \\ \dot{\boldsymbol{\xi}}_{1} &= \mathbf{f}_{1}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1}) + \mathbf{g}_{1,\boldsymbol{\xi}}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1})\boldsymbol{\xi}_{2} + \mathbf{g}_{1,\mathbf{u}}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1})\mathbf{u}_{1}, \\ &\vdots \\ \dot{\boldsymbol{\xi}}_{r} &= \mathbf{f}_{r}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\boldsymbol{\xi}_{2},\ldots,\boldsymbol{\xi}_{r}) + \mathbf{g}_{r}(\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{r})\mathbf{u}_{r}, \\ \boldsymbol{\xi}_{i} \in \mathbb{R}^{p_{i}} \quad \mathbf{z}_{i} = (\boldsymbol{\xi}_{0},\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{i}) \in \mathbb{R}^{q_{i}} \quad i = 0,\ldots,r \end{split}$$

Top-Level Safety Design

$$\begin{aligned} \mathcal{C}_0 &= \{ \boldsymbol{\xi}_0 \in \mathbb{R}^{p_0} \mid h_0(\boldsymbol{\xi}_0) \ge 0 \} \\ \frac{\partial h_0}{\partial \boldsymbol{\xi}_0}(\mathbf{z}_0) \left(\mathbf{f}_0(\mathbf{z}_0) + \mathbf{g}_{0,\boldsymbol{\xi}}(\mathbf{z}_0) \mathbf{k}_{0,\boldsymbol{\xi}}(\mathbf{z}_0) \\ &+ \mathbf{g}_{0,\mathbf{u}}(\mathbf{z}_0) \mathbf{k}_{0,\mathbf{u}}(\mathbf{z}_0) \right) \ge -\alpha_0(h_0(\mathbf{z}_0)) \end{aligned}$$

Andrew J. Taylor

17

Multi-Cascade System

$$\begin{split} \dot{\boldsymbol{\xi}}_0 &= \mathbf{f}_0(\boldsymbol{\xi}_0) + \mathbf{g}_{0,\boldsymbol{\xi}}(\boldsymbol{\xi}_0)\boldsymbol{\xi}_1 + \mathbf{g}_{0,\mathbf{u}}(\boldsymbol{\xi}_0)\mathbf{u}_0, \\ \dot{\boldsymbol{\xi}}_1 &= \mathbf{f}_1(\boldsymbol{\xi}_0, \boldsymbol{\xi}_1) + \mathbf{g}_{1,\boldsymbol{\xi}}(\boldsymbol{\xi}_0, \boldsymbol{\xi}_1)\boldsymbol{\xi}_2 + \mathbf{g}_{1,\mathbf{u}}(\boldsymbol{\xi}_0, \boldsymbol{\xi}_1)\mathbf{u}_1, \\ &\vdots \\ \dot{\boldsymbol{\xi}}_r &= \mathbf{f}_r(\boldsymbol{\xi}_0, \boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \dots \boldsymbol{\xi}_r) + \mathbf{g}_r(\boldsymbol{\xi}_0, \boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_r)\mathbf{u}_r, \\ \boldsymbol{\xi}_i \in \mathbb{R}^{p_i} \quad \mathbf{z}_i = (\boldsymbol{\xi}_0, \boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_i) \in \mathbb{R}^{q_i} \quad i = 0, \dots, r \end{split}$$

Top-Level Safety Design

$$\begin{aligned} \mathcal{C}_0 &= \{ \boldsymbol{\xi}_0 \in \mathbb{R}^{p_0} \mid h_0(\boldsymbol{\xi}_0) \geq 0 \} \\ \frac{\partial h_0}{\partial \boldsymbol{\xi}_0}(\mathbf{z}_0) \left(\mathbf{f}_0(\mathbf{z}_0) + \mathbf{g}_{0,\boldsymbol{\xi}}(\mathbf{z}_0) \mathbf{k}_{0,\boldsymbol{\xi}}(\mathbf{z}_0) \\ &+ \mathbf{g}_{0,\mathbf{u}}(\mathbf{z}_0) \mathbf{k}_{0,\mathbf{u}}(\mathbf{z}_0) \right) \geq -\alpha_0(h_0(\mathbf{z}_0)) \end{aligned}$$

Lyapunov & Barrier Top Level Design

$$\begin{split} \dot{V}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) &\leq -\gamma(V_0(\mathbf{x}_0)) \\ \dot{h}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) &\geq -\alpha_0(h(\mathbf{x})) \end{split}$$

Lyapunov & Barrier Top Level Design

 $\dot{V}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) \le -\gamma(V_0(\mathbf{x}_0))$ $\dot{h}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) \ge -\alpha_0(h(\mathbf{x}))$

Composite Lyapunov & Barrier

$$V(\mathbf{x}, \boldsymbol{\xi}) = V_0(\mathbf{x}) + \frac{1}{2\mu_V} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))^\top (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))$$
$$h(\mathbf{x}, \boldsymbol{\xi}) = h_0(\mathbf{x}) - \frac{1}{2\mu_h} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))^\top (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))$$

Lyapunov & Barrier Top Level Design

 $\begin{aligned} \dot{V}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) &\leq -\gamma(V_0(\mathbf{x}_0)) \\ \dot{h}_0(\mathbf{x}, \mathbf{k}_0(\mathbf{x})) &\geq -\alpha_0(h(\mathbf{x})) \end{aligned}$

Composite Lyapunov & Barrier

$$V(\mathbf{x}, \boldsymbol{\xi}) = V_0(\mathbf{x}) + \frac{1}{2\mu_V} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))^\top (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))$$
$$h(\mathbf{x}, \boldsymbol{\xi}) = h_0(\mathbf{x}) - \frac{1}{2\mu_h} (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))^\top (\boldsymbol{\xi} - \mathbf{k}_0(\mathbf{x}))$$

Time Derivatives

$$\begin{split} \dot{V}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) &= b_{V,1}(\mathbf{x}, \boldsymbol{\xi}) + \frac{1}{\mu_V} \mathbf{a}_1(\mathbf{x}, \boldsymbol{\xi})^\top \mathbf{u} \\ \dot{h}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) &= b_{h,1}(\mathbf{x}, \boldsymbol{\xi}) - \frac{1}{\mu_h} \mathbf{a}_1(\mathbf{x}, \boldsymbol{\xi})^\top \mathbf{u} \end{split}$$

-	CLF + CBF Condition
	$ \inf_{\mathbf{u} \in \mathbb{R}^{m}} \dot{V}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) = b_{V,1}(\mathbf{x}, \boldsymbol{\xi}) + \frac{1}{\mu_{V}} \mathbf{a}_{1}(\mathbf{x}, \boldsymbol{\xi})^{\top} \mathbf{u} \\ \leq -\gamma_{3}(\ \mathbf{x}\) - \gamma_{3}'(\ \boldsymbol{\xi} - \mathbf{k}_{0}(\mathbf{x}))\) $
	$ \inf_{\mathbf{u} \in \mathbb{R}^{m}} \dot{h}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{u}) = -b_{h,1}(\mathbf{x}, \boldsymbol{\xi}) + \frac{1}{\mu_{h}} \mathbf{a}_{1}(\mathbf{x}, \boldsymbol{\xi})^{\top} \mathbf{u} \\ \leq \alpha_{0}(h_{0}(\mathbf{x})) - \frac{\lambda}{2\mu_{h}} \ \boldsymbol{\xi} - \mathbf{k}_{0}(\mathbf{x})\ _{2}^{2} $

$$\begin{split} \mathbf{k}(\mathbf{x}, \boldsymbol{\xi}) &= \operatorname*{argmin}_{\mathbf{u} \in \mathbb{R}^m} \|\mathbf{u}\|_2^2 \\ \text{s.t. } \mathbf{a}_1(\mathbf{x}, \boldsymbol{\xi})^\top \mathbf{u} \leq \min\{c_{V,1}(\mathbf{x}, \boldsymbol{\xi}), c_{h,1}(\mathbf{x}, \boldsymbol{\xi})\} \end{split}$$

How do we design a smooth top-level controller meeting both constraints?

Andrew J. Taylor 1

How do we design a smooth top-level controller meeting both constraints?

Optimization-based controllers generally are not smooth.

Andrew J. Taylor 1

Top-Level System Joint CLF + CBF

For all $\mathbf{x} \in \mathbb{R}^n$, there exists $\mathbf{v} \in \mathbb{R}^p$ s.t. $\frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{v})) \leq -\gamma_3(\|\mathbf{x}\|)$ $\frac{\partial h_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{v})) \geq -\alpha_0(h_0(\mathbf{x}))$

Top-Level System Joint CLF + CBF

For all $\mathbf{x} \in \mathbb{R}^n$, there exists $\mathbf{v} \in \mathbb{R}^p$ s.t. $\frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{v})) \leq -\gamma_3(||\mathbf{x}||)$ $\frac{\partial h_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{v})) \geq -\alpha_0(h_0(\mathbf{x}))$

Top-Level System Joint CLF + CBF

For all $\mathbf{x} \in \mathbb{R}^n$, there exists $\mathbf{v} \in \mathbb{R}^p$ s.t. $\frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{v})) \leq -\gamma_3(||\mathbf{x}||)$ $\frac{\partial h_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{v})) \geq -\alpha_0(h_0(\mathbf{x}))$

Feasible Input Sets

$$\begin{aligned} \mathcal{U}_{V}(\mathbf{x}) &= \{ \mathbf{v} \in \mathbb{R}^{p} \mid \mathbf{a}_{V,0}(\mathbf{x})^{\top} \mathbf{v} + b_{V,0}(\mathbf{x}) \leq 0 \} \\ \mathcal{U}_{h}(\mathbf{x}) &= \{ \mathbf{v} \in \mathbb{R}^{p} \mid \mathbf{a}_{h,0}(\mathbf{x})^{\top} \mathbf{v} + b_{h,0}(\mathbf{x}) \leq 0 \} \\ \mathcal{U}_{h}(\mathbf{x}) \cap \mathcal{U}_{V}(\mathbf{x}) \neq \emptyset \end{aligned}$$

Partition of Unity Approach^[8]

Top-Level System Joint CLF + CBF

For all $\mathbf{x} \in \mathbb{R}^n$, there exists $\mathbf{v} \in \mathbb{R}^p$ s.t. $\frac{\partial V_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{v})) \leq -\gamma_3(\|\mathbf{x}\|)$ $\frac{\partial h_0}{\partial \mathbf{x}}(\mathbf{x})(\mathbf{f}_0(\mathbf{x}) + \mathbf{g}_0(\mathbf{x})\mathbf{v})) \geq -\alpha_0(h_0(\mathbf{x}))$

[8] P. Ong, J. Cortés, "Universal formula for smooth safe stabilization", 2019.

Feasible Input Sets

$$\begin{aligned} \mathcal{U}_{V}(\mathbf{x}) &= \{ \mathbf{v} \in \mathbb{R}^{p} \mid \mathbf{a}_{V,0}(\mathbf{x})^{\top} \mathbf{v} + b_{V,0}(\mathbf{x}) \leq 0 \} \\ \mathcal{U}_{h}(\mathbf{x}) &= \{ \mathbf{v} \in \mathbb{R}^{p} \mid \mathbf{a}_{h,0}(\mathbf{x})^{\top} \mathbf{v} + b_{h,0}(\mathbf{x}) \leq 0 \} \\ \mathcal{U}_{h}(\mathbf{x}) \cap \mathcal{U}_{V}(\mathbf{x}) \neq \emptyset \end{aligned}$$

Partition of Unity Approach^[8]

Caltech

[8] P. Ong, J. Cortés, "Universal formula for smooth safe stabilization", 2019.[9] G. M. Tallis, "The moment generating function of the truncated multi-normal distribution", 1961.

[10] G. M. Tallis, "Plane truncation in normal populations", 1965.

Andrew J. Taylor 2

Caltech

[8] P. Ong, J. Cortés, "Universal formula for smooth safe stabilization", 2019.

Caltech

[8] P. Ong, J. Cortés, "Universal formula for smooth safe stabilization", 2019.

Simulation Results

time, t

time, t

Andrew J. Taylor 22

Simulation Results

Andrew J. Taylor 23

Caltech

Conclusions

- Framework for achieving safety of higher-order systems by unifying classical Lyapunov backstepping with Control Barrier Functions
- Constructive tool for **synthesizing** Control Barrier Functions for higherorder systems
- Design of **stable and safe** nonlinear controllers through joint Lyapunov and Barrier backstepping

Thank You!

Safe Backstepping with Control Barrier Functions

Andrew J. TaylorPio OngTamas G. MolnárAaron D. Ames

