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Abstract— Modern nonlinear control theory seeks to endow
systems with properties such as stability and safety, and has
been deployed successfully across various domains. Despite this
success, model uncertainty remains a significant challenge in
ensuring that model-based controllers transfer to real world
systems. This paper develops a data-driven approach to robust
control synthesis in the presence of model uncertainty using
Control Certificate Functions (CCFs), resulting in a convex
optimization based controller for achieving properties like
stability and safety. An important benefit of our framework
is nuanced data-dependent guarantees, which in principle can
yield sample-efficient data collection approaches that need not
fully determine the input-to-state relationship. This work serves
as a starting point for addressing important questions at the
intersection of nonlinear control theory and non-parametric
learning, both theoretical and in application. We demonstrate
the efficiency of the proposed method with respect to input
data in simulation with an inverted pendulum in multiple
experimental settings.

I. INTRODUCTION

Ensuring properties such as stability and safety is of
significant importance in many modern control applica-
tions, including autonomous driving, industrial robotics, and
aerospace vehicles. In practice, the models used to design
these controllers are imperfect, with model uncertainty aris-
ing due to unmodeled dynamics and parametric errors. In
the presence of such uncertainty, controllers may fail to
render systems stable or safe. As real world control systems
become increasingly complex, the potential for detrimental
modeling errors increases, and thus it is critical to study
control synthesis in the presence of uncertainty.

In this work, we propose a control synthesis process using
control certificate functions (CCFs) [1], [2] that incorporates
a data-driven approach for capturing model uncertainty.
CCFs generalize popular tools from nonlinear control for
achieving stability and safety such as Control Lyapunov
Functions (CLFs) [3], Control Barrier Functions (CBFs)
[4], and Control Barrier-Lyapunov Functions [5]. CLFs and
CBFs have been successfully deployed in the context of
bipedal robotics [6], [7], adaptive cruise control [4], robotic
manipulators [8], and multi-agent systems [9]. Data-driven
and machine learning based approaches have shown great
promise for controlling systems with an uncertain model or
with no model at all [10], [11], [12], [13]. The integration
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of techniques from nonlinear control theory for achieving
stability and safety with data-driven methods has become
increasingly popular [14], [15], [16], [17], [18], with many
approaches relying on certificate functions for theoretical
guarantees [8], [19], [20], [21], [22].

Uncertainty in the effect of actuation remains a major
challenge in achieving control-theoretic guarantees with data-
driven methods. Many existing approaches assume certainty
in how actuation enters the dynamics [23], [24], [25], use
structured controllers requiring strong characterizations of
this uncertainty [15], [26], or require high coverage datasets
with (nearly) complete characterizations of the input-to-state
relationship [27], [28]. In practice, collecting such data can
be prohibitively costly or damage the system, suggesting a
need for data-driven approaches that accommodate actuation
uncertainty without requiring this complete characterization.

Our contribution: The contribution of this work is a
novel approach for robust data-driven control synthesis via
CCFs for control-affine systems with model uncertainty,
including actuation uncertainty, which is broadly applicable
in many real-world settings such as robotic [29] and au-
tomotive systems [30]. In Section III we incorporate data
into a convex optimization based control synthesis problem
as affine inequality constraints which restrict possible model
uncertainties. This enables the choice of robust control inputs
over convex uncertainty sets. Rather than requiring a full
characterization of how input enters the system, this approach
utilizes the affine structure of CCF dynamics to choose
inputs. This reduces the impact of actuation uncertainty
on the evolution of the certificate function and allows for
guarantees of stability and safety. In summary, our results
show that good performance can be achieved when training
data provides sufficiently dense coverage of the state space
and targeted excitation in input directions. The proposed ap-
proach provides a unique perspective for unifying nonlinear
control and non-parametric machine learning that is well
positioned to study both theoretical and application oriented
questions at this intersection.

II. BACKGROUND

This section provides a review of certificate-based non-
linear control synthesis and an overview of how model
uncertainty impacts these synthesis methods.

A. Control Certificate Functions

Consider a nonlinear control affine system given by:

ẋ = f(x) + g(x)u, (1)



where x ∈ Rn, u ∈ Rm, and f : Rn → Rn and
g : Rn → Rn×m are locally Lipschitz continuous on Rn.
Further assume that the origin is an equilibrium point of the
uncontrolled system (f(0) = 0). In this work we assume that
u may be chosen unbounded as in [8], [31]. Given a locally
Lipschitz continuous state-feedback controller k : Rn →
Rm, the closed-loop system dynamics are:

ẋ = fcl(x) , f(x) + g(x)k(x). (2)

The assumption on local Lipschitz continuity of f , g, and k
implies that fcl is locally Lipschitz continuous. Thus for any
initial condition x0 , x(0) ∈ Rn there exists a maximum
time interval I(x0) = [0, tmax) such that x(t) is the unique
solution to (2) on I(x0) [32].

The qualitative behavior (such as stability or safety) of the
the closed-loop system (2) can be certified via the notion of
a continuously differentiable certificate function C : Rn →
R. Given a comparison function α : R → R (specific to
the qualitative behavior of interest), certification is specified
as an inequality on the derivative of the certificate function
along solutions to the closed-loop system:

Ċ(x) = ∇C(x)>fcl(x) ≤ −α(C(x)) . (3)

Synthesis of controllers that satisfy (3) by design motivates
the following definition of a Control Certificate Function:

Definition 1 (Control Certificate Function (CCF)). A con-
tinuously differentiable function C : Rn → R is a Control
Certificate Function (CCF) for (1) with comparison function
α : R→ R if for all x ∈ Rn:

inf
u∈Rm

∇ C(x)>f(x)︸ ︷︷ ︸
Lf C(x)

+∇C(x)>g(x)︸ ︷︷ ︸
LgC(x)

u ≤ −α(C(x)). (4)

where LfC : Rn → R and LgC : Rn → Rm. The control-
affine nature of the system dynamics are preserved by the
CCF, such that the only component of the input that impacts
the evolution of the certificate function lies in the direction
of LgC(x). Given a CCF C for (1) and a corresponding
comparison function α, we define the point-wise set of all
control values that satisfy the inequality in (4):

Kccf(x) , {u ∈ Rm | LfC(x) + LgC(x)u ≤ −α(C(x))} .
(5)

Any nominal locally Lipschitz continuous controller kd :
Rn → Rm can be modified to take values in the set Kccf(x)
via the certificate-critical CCF-QP:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (CCF-QP)

s.t. ∇C(x)> (f(x) + g(x)u) ≤ −α(C(x)).

Before providing particular examples of certificate func-
tions useful in control synthesis, we review the following
definitions. We denote a continuous function α : [0, a) →
R+, with a > 0, as class K (α ∈ K) if α(0) = 0
and α is strictly monotonically increasing. If a = ∞ and
limr→∞ α(r) = ∞, then α is class K∞ (α ∈ K∞). A
continuous function α : (−b, a) → R, with a, b > 0, is

extended class K (α ∈ Ke) if α(0) = 0 and α is strictly
monotonically increasing. If a, b = ∞, limr→∞ α(r) = ∞,
and limr→−∞ α(r) = −∞, then α is extended class K∞
(α ∈ K∞,e). Finally, we note that c ∈ R is referred to
as a regular value of a continuously differentiable function
h : Rn → R if h(x) = c =⇒ ∇h(x) 6= 0n.

Example 1 (Stability via Control Lyapunov Functions). In
the context of stabilization to the origin, a control certificate
function V : Rn → R with a class K comparison function
α ∈ K that satisfies:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (6)

for α1, α2 ∈ K, is a Control Lyapunov Function (CLF) [3],
[33], with stabilization to the origin achieved by controllers
taking values in the point-wise set Kccf given by (5) [34].

Example 2 (Safety via Control Barrier Functions). In the
context of safety, defined as forward invariance [35] of a set
S, a control certificate function h : Rn → R with 0 a regular

value and a comparison function α ∈ K∞,e that satisfies:

x ∈ S =⇒ h(x) ≤ 0, (7)

is a Control Barrier Function (CBF) [4], [34], with safety of
the set S achieved by controllers taking values in the point-
wise set Kccf given by (5) [36]. We adopt the opposite sign
convention for h so satisfying (4) guarantees safety.

B. Model Uncertainty

In practice, uncertainty in the system dynamics (1) exists
due to parametric error and unmodeled dynamics, such that
the functions f and g are not precisely known. Control affine
systems are a natural setting to study actuation uncertainty as
the function g can be seen as an uncertain gain multiplying
the input. In this context, control synthesis is done with a
nominal model that estimates the true system dynamics:̂̇x = f̂(x) + ĝ(x)u, (8)

where f̂ : Rn → Rn and ĝ : Rn → Rn×m are locally
Lipschitz continuous. Adding and subtracting this expression
to and from (1) implies the system evolution is described by:

ẋ = f̂(x) + ĝ(x)u + f(x)− f̂(x)︸ ︷︷ ︸
f̃(x)

+(g(x)− ĝ(x))︸ ︷︷ ︸
g̃(x)

u, (9)

where f̃ : Rn → Rn and g̃ : Rn → Rn×m are the unmodeled
dynamics. This uncertainty in the dynamics additionally
manifests in the time derivative of a CCF for the system:

Ċ(x,u) =

̂̇C(x,u)︷ ︸︸ ︷
∇C(x)>f̂(x)︸ ︷︷ ︸

L
f̂
C(x)

+∇C(x)>ĝ(x)︸ ︷︷ ︸
LĝC(x)

u

+∇C(x)>f̃(x)︸ ︷︷ ︸
L

f̃
C(x)

+∇C(x)>g̃(x)︸ ︷︷ ︸
Lg̃C(x)

u, (10)

where Lf̂C, Lf̃C : Rn → R, and LĝC, Lg̃C : Rn → Rm. The
presence of uncertainty in the CCF time derivative makes it



impossible to verify whether a given control input is in the
set Kccf(x) given in (5), and can lead to failure to achieve
the desired qualitative behavior.

Assumption 1. The function C : Rn → R is a valid CCF
with comparison function α : R → R for the true dynamic
system (9). Mathematically this assumption appears as:

inf
u∈Rm

∇C(x)> (f(x) + g(x)u) ≤ −α(C(x)).

This assumption is structural in nature and can be met for
feedback linearizable systems (such as robotic systems).

Remark 1. Though many approaches to CCF design (lin-
earization, energy-based, numerical sums-of-squares meth-
ods) rely on knowledge of the true dynamics, it is also
possible to design CCFs without explicit knowledge of
the true system dynamics. For example, a valid CLF and
comparison function for the true system can be designed
via feedback linearization assuming only knowledge of the
degree of actuation (see [37] for full details). This method
also works to specify CBFs which are defined by sublevel
sets of CLFs (as in our simulation results). We emphasize
the difference between choosing a qualitative behavior that
the system can be made to satisfy (e.g. the CCF) and actually
designing the control inputs which achieve the behavior. Our
work focuses on the latter: solving the problem of choosing
stable/safe inputs in the presence of uncertainty.

Assumption 2. The functions f̃ and g̃ are globally Lipschitz
continuous with known Lipschitz constants Lf̃ and Lg̃.

Remark 2. Knowledge of minimal Lipschitz constants is not
necessary, but smaller Lipschitz constants are associated with
improved performance of data-driven robust control methods.

III. DATA-DRIVEN ROBUST CONTROL SYNTHESIS

In this section we explore how data can be incorporated
directly into an optimization based controller to robustly
achieve a desired qualitative behavior specified via a CCF.

Consider a dataset consisting of N tuples of states,
inputs, and corresponding state time derivatives, D =
{(xi,ui, ẋi)}Ni=1, with xi ∈ Rn, ui ∈ Rm, and ẋi ∈ Rn
for i = 1, . . . , N . It may not be possible to directly measure
the state time derivatives ẋi, but they can approximated from
sequential state observations xi [37], [38]. While we do not
consider noise, our construction can be modified to account
for bounded noise at the expense of a constant offset to (13).

We now show how data allows us to reduce uncertainty
by constraining the possible values of the functions f̃ and
g̃ directly, without a parametric estimator. Considering the
uncertain model (9) evaluated at a state and input pair
(xi,ui) in the dataset yields:

F̃i , ẋi − (f̂(xi) + ĝ(xi)ui) = f̃(xi) + g̃(xi)ui, (11)

where F̃i ∈ Rn can be interpreted as the error between the
true state time derivative and the nominal model (8) evaluated
at the state and input pair (xi,ui).

Considering a state x ∈ Rn (not necessarily present in the
dataset D), the second equality in (11) implies:

f̃(x) + g̃(x)ui − F̃i = f̃(x)− f̃(xi) + (g̃(x)− g̃(xi))ui.
(12)

This expression provides a relationship between the possible
values of the unmodeled dynamics f̃ and g̃ at the state x
and the values of the unmodeled dynamics at the data point
xi. Using the local Lipschitz continuity of the unmodeled
dynamics yields the following bound:∥∥∥f̃(x) + g̃(x)ui − F̃i

∥∥∥
2

=
∥∥∥f̃(x)− f̃(xi) + (g̃(x)− g̃(xi))ui

∥∥∥
2
,

≤
(
Lf̃ + Lg̃‖ui‖2

)
‖x− xi‖2 , εi(x).

(13)

where εi : Rn → R+ for i = 1, . . . , N . We see that the
bound grows with the magnitude of the Lipschitz constants
Lf̃ and Lg̃ and distance of the state x from the data point xi.
The values of Lf̃ and Lg̃ are not explicitly data dependent,
and thus the bound can be improved for a given dataset by
reducing the possible model uncertainty through improved
modeling. Given this construction we may define the point-
wise uncertainty set:

Ui(x) ,
{
(A,b) ∈ Rn×m × Rn

∣∣∣∣∥∥∥b + Aui − F̃i

∥∥∥
2
≤ εi(x)

}
⊂ Rn×m × Rn,

(14)

noting that (g̃(x), f̃(x)) ∈ Ui(x) and Ui(x) is closed and
convex. Considering this construction over the entire dataset
D yields the following point-wise uncertainty set:

U(x) ,
N⋂
i=1

Ui(x) ⊂ Rn×m × Rn, (15)

noting that (g̃(x), f̃(x)) ∈ U(x) and U(x) is closed and
convex. Therefore, U(x) consists of all possible model errors
that are consistent with the observed data. This allows us to
pose the following data robust control problem:

Definition 2 (Data Robust Control Certificate Function Op-
timization Problem).

krob(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (DR-CCF-OP)

s.t. ̂̇C(x,u) +∇C(x)> (b + Au) ≤ −α(C(x))
for all (A,b) ∈ U(x).

By construction we have that (g̃(x), f̃(x)) ∈ U(x),
implying that krob(x) ∈ Kccf(x) when the problem is
feasible. Thus the closed-loop system (2) under krob satisfies
inequality (3). We next present one of our main results,
using robust optimization [39] to yield a convex problem
for synthesizing such a robust controller.



Theorem 1 (Robust Control Synthesis). Let C : Rn →
R be a control certificate with comparison function α :
R→ R. The robust controller (DR-CCF-OP) is equivalently
expressed as:

krob(x) = argmin
u∈Rm

λi∈Rn

1

2
‖u− kd(x)‖22 (DR-CCF-SOCP)

s.t. ̂̇C(x,u)− N∑
i=1

(
λ>i F̃i − ‖λi‖2εi(x)

)
≤ −α(C(x)),

N∑
i=1

λiu
>
i = −∇C(x)u>,

N∑
i=1

λi = −∇C(x).

Proof. An input u ∈ Rm is feasible if the optimal value of
the optimization problem:

sup
A∈Rn×m

b∈Rn

̂̇C(x,u) +∇C(x)>(b + Au)

s.t. ‖b + Aui − F̃i‖2 ≤ εi(x) for all i ∈ 1, . . . , N,

is less than or equal to −α(C(x)). Each inequality con-
straint can be rewritten as set membership in a second-
order cone. That is, (b + Aui − F̃i, εi(x)) ∈ Qn for each
i ∈ {1, . . . , N}, with Qn ⊂ Rn+1 denoting the Lorentz
cone Qn = {(y, t) ∈ Rn × R : ‖y‖2 ≤ t}. This yields the
following dual problem:

inf
λi∈Rn

νi∈R

̂̇C(x,u)− N∑
i=1

(
λ>i F̃i − νiεi(x)

)

s.t.

N∑
i=1

λiu
>
i = −∇C(x)u>,

N∑
i=1

λi = −∇C(x)

‖λi‖2 ≤ νi for all i ∈ 1, . . . , N,

where (λi, νi) ∈ Qn are Lagrange multipliers corresponding
to the constraints imposed by the data point (xi,ui). For any
(xi,ui), choosing Lagrange multipliers such that νi > ‖λi‖2
increases the value of the dual problem compared to choosing
νi = ‖λi‖2. We therefore simplify the problem as:

inf
λi∈Rn

̂̇C(x,u)−∑
i=1

(
λ>i F̃i − ‖λi‖2εi(x)

)
s.t.

N∑
i=1

λiu
>
i = −∇C(x)u>,

N∑
i=1

λi = −∇C(x).

This optimization problem can then replace the original
robust constraint in (DR-CCF-OP) to yield the final opti-
mization problem (DR-CCF-SOCP).

Remark 3. Solving this optimization problem in a computa-
tionally efficient manner may require data segmentation for
higher-dimensional problems [40], but a detailed considera-
tion is outside the scope of this work, which is focused on
theoretical foundations.

IV. FEASIBILITY

In this section we provide an analysis of the feasibility of
the controller proposed in Section III. The feasibility of the
controller (DR-CCF-SOCP) at a given state x is determined
by the structure of the uncertainty set U(x) defined in (15).
The following lemma provides a condition on the inputs in
the dataset that implies U(x) is bounded for all x ∈ Rn:

Lemma 1 (Bounded Uncertainty Sets). Consider a dataset
D with N data points satisfying N ≥ m+ 1. If there exists
a set of data points {(xi,ui, ẋi)}m+1

i=1 ⊆ D such that the set
of vectors:

M ,
{[

u>i 1
]>}m+1

i=1
, (16)

are linearly independent, then the uncertainty set U(x) is
bounded (and thus compact) for any x ∈ Rn.

Proof. Consider the set M, and define:

Mu ,

{
ui ∈ Rm

∣∣∣∣ [ui1
]
∈M

}
.

For arbitrary x ∈ Rn, let (A,b) ∈ U(x). By definition of
the individual uncertainty sets Ui(x) and U(x) given in (14)
and (15), respectively, we have that:∥∥∥Aui + b− F̃i

∥∥∥
2
≤ εi(x), (17)

for ui ∈Mu. Defining vi , Aui + b− F̃i, we have that:
m+1∑
i=1

∥∥∥Aui + b− F̃i

∥∥∥2
2
=

m+1∑
i=1

n∑
j=1

|Vji|2 = ‖V‖2F ,

where ‖ · ‖F is the Frobenius norm and V =[
v1 · · · vm+1

]
. Noting that ‖V‖F = ‖V>‖F , factoring

and using the fact ‖P‖2 ≤ ‖P‖F for any P ∈ Rm+1×n in
conjunction with (17) yields:∥∥∥∥∥∥∥

 u>1 1
...

...
u>m+1 1

[A>
b>

]
−

 F̃>1
...

F̃>m+1


∥∥∥∥∥∥∥
2

2

≤
m+1∑
i=1

εi(x)
2.

Taking the square root of both sides and employing the
reverse triangle inequality we arrive at:∥∥∥∥∥∥∥∥∥∥∥

 u>1 1
...

...
u>m+1 1


︸ ︷︷ ︸

U

[
A>

b>

]
∥∥∥∥∥∥∥∥∥∥∥
2

≤

√√√√m+1∑
i=1

εi(x)2 +

∥∥∥∥∥∥∥
 F̃>1

...
F̃>m+1


∥∥∥∥∥∥∥
2

.

Noting that U has full rank by the linear independence of
the vectors in the set M, we have that:

σm+1(U)

∥∥∥∥[A>b>

]∥∥∥∥
2

≤

∥∥∥∥∥∥∥
 u>1 1

...
...

u>m+1 1

[A>
b>

]∥∥∥∥∥∥∥
2

,

where σm+1(U) > 0 is the smallest singular value of
U. Combining the two previous inequalities shows that the
uncertainty set U(x) is bounded.



This result shows that variety in input directions is suf-
ficient to assert boundedness of the uncertainty set as a
uniform property over the entire state space. As seen in the
proof, the bound on this set may be very large if the values
of εi(x) are large (as is the case when x is far away from the
data points xi associated with the inputs used to construct
the bound). Alternatively, the uncertainty set will be small for
a point x if there is local variety in input directions within
the training dataset. To understand how the size of U(x)
impacts feasibility of the optimization problem, we define
the following set:

ŨC(x) ,
{
(a, b) ∈ Rm × R | ∃ (A,b) ∈ U(x) s.t.

a = (∇C(x)>A)>, b = ∇C(x)>b
}
, (18)

The set ŨC(x) can be interpreted as the projection of the
dynamics uncertainty set U(x) along the gradient of the
control certificate function C, creating an m+1 dimensional
set which represents the possible uncertainties in the Lie
derivatives of C. Additionally define the set:

UC(x) ,
{(
LĝC(x)

>, Lf̂C(x)
)}
⊕ ŨC(x), (19)

where ⊕ denotes a Minkowski sum. The set UC(x) is the
recentering of ŨC(x) set around the estimate of the Lie
derivatives (LĝC(x)

>, Lf̂C(x)) ∈ Rm+1, such that it cap-
tures the possible true Lie derivatives of C. As multiplication
by ∇C(x)> is a linear transformation, ŨC(x) and UC(x) are
convex, and if U(x) is bounded (and therefore compact),
then ŨC(x) and UC(x) are compact.

We present our second main result in the form of a neces-
sary and sufficient condition for feasibility of (DR-CCF-OP):

Theorem 2 (Feasibility of Data-Driven Robust Controller).
For a state x ∈ Rn, let the sets U(x) and UC(x) be defined
as in (15) and (19), respectively. Define the ray R ⊂ Rm+1

as R = {0m} × (−α(C(x)),∞). Assuming that U(x) is
bounded, the data-driven robust controller (DR-CCF-SOCP)
is feasible if and only if:

UC(x) ∩R = ∅. (20)

Intuitively, the rayR represents Lie derivative pairs that do
not satisfy the certificate function condition with no actuation
and cannot be modified through actuation. By Assumption
1, the Lie derivatives of the true system are not contained
in R, but the possible uncertainties permitted by data need
not necessarily reflect this. If one possible uncertainty pair
in the set UC(x) is contained in R, it is impossible to meet
the certificate condition for that uncertainty pair.

Proof. The proof proceeds from the original structure of the
robust control problem (DR-CCF-OP). The constraint on the
input u∗ specified by this controller is given by:

Lf̂C(x)+∇C(x)
>b+(LĝC(x)+∇C(x)>A)u∗ ≤ −α(C(x)).

for all (A,b) ∈ U(x). Given the definitions of ŨC(x) and
UC(x) in (18) and (19), this constraint can be expressed as:

q + p>u∗ ≤ −α(C(x)) (21)

for all (p, q) ∈ UC(x).
1) Necessity: Assume that UC(x) ∩ R 6= ∅. This implies

that there exists a (p, q) ∈ UC(x) such that q > −α(C(x))
and p = 0m. Thus for any input u ∈ Rm, we have that:

q + p>u = q > −α(C(x)),

violating the constraint in (21). Thus the optimization prob-
lem is infeasible.

2) Sufficiency: Begin by defining the hyperplane H ⊂
Rm+1 with unit normal n =

[
0>m 1

]>
and offset −α(C(x))

and define the set:

UC(x) =

{
(p, q) ∈ UC(x)

∣∣ 〈[0m
1

]
,

[
p
q

]〉
≥ −α(C(x))

}
,

which corresponds to the Lie derivative pairs in the set UC(x)
that do not meet the certificate function condition (21) strictly
under no input (u∗ = 0m). Note that if u∗ = 0m satisfies
(21) for all (p, q) ∈ UC(x), then u∗ = 0m satisfies (21) for
all (p, q) ∈ UC(x).

We also note that the set UC(x) is a closed subset of the
compact and convex set UC(x) that is also contained in a
(convex) half-space defined by the hyperplane H, meaning
UC(x) is compact and convex (as it is the intersection of

convex sets). Therefore, we can define:

q?? = max
(p,q)∈UC(x)

q = max
(p,q)∈UC(x)

〈[
0m
1

]
,

[
p
q

]〉
,

which exists as the function
〈[

0>m 1
]>
, ·
〉
: UC(x) → R

is continuous on a compact domain. We consider the case
that q?? > −α(C(x)), as otherwise u∗ = 0m satisfies (21).

Define the projection function Π : Rm × R → Rm such
that for (p, q) ∈ Rm × R we have:

Π((p, q)) = p.

As Π is a linear transform, the image of the compact and
convex set UC(x) under Π, denoted as Π(UC(x)), is compact
and convex and by assumption satisfies:

Π(UC(x)) ∩ {0m} = ∅.

We may use the strict separating hyperplane theorem [41] to
separate the set Π(UC(x)) from {0m} with the hyperplane
Hβ with unit normal s ∈ Sm−1 and offset β ∈ R++. This
hyperplane can also be shifted to pass through the origin,
given by H0 (with unit normal s ∈ Sm−1 and offset 0). This
results in the configuration seen in Figure 1.

These hyperplanes can be extended back into the ambient
space Rm × R by defining hyperplanes H′β ⊂ Rm × R
and H′0 ⊂ Rm × R with normal vector s′ =

[
s> 0

]>
and respective offsets β and 0. These hyperplanes serve to
separate the vertical axis 0m × R from the cylinder defined
by Π(UC(x))×R. Define the two following open halfspaces:

H+
0 ,

{
(p, q) ∈ Rm × R

∣∣∣∣ 〈s′,

[
p
q

]〉
= p>s > 0

}
H−0 ,

{
(p, q) ∈ Rm × R

∣∣∣∣ 〈s′,

[
p
q

]〉
= p>s < 0

}



We will now find a feasible input that lies anti-parallel to
s, i.e., we will consider inputs of the form u∗ = −γs for
γ ≥ 0 throughout the rest of this proof. Finding a feasible
input satisfying constraint (21) amounts to finding a γ∗ such
that q − γ∗p>s ≤ −α(C(x)) for all (p, q) ∈ UC(x). By
definition we have that for any (p, q) ∈ UC(x):〈

s′,

[
p
q

]〉
= s>p ≥ β.

Let γ0 > 0 be defined as:

γ0 =
q?? + α(C(x))

β
> 0.

This value of γ0 implies that for any (p, q) ∈ UC(x) we
have:

q − γ0p>s ≤ q?? − γ0β ≤ −α(C(x)),

Define the set:

VC(x, γ) =
{
(p, q − γp>s) ∈ Rm × R | (p, q) ∈ UC(x)

}
,

and the function:

ψ(γ) = max
(p,q)∈VC(x,γ)

q,

that satisfies ψ(0) = q?? and ψ(γ0) ≤ −α(C(x)). We later
show that ψ is continuous, but note the intermediate value
theorem implies the existence of a γ∗ ∈ (0, γ0] with:

ψ(γ∗) = max
(p,q)∈VC(x,γ∗)

q = −α(C(x)).

Fixing u∗ = −γ∗s, we have that condition (21) is satisfied
for all points (p, q) ∈ H+

0 ∩ UC(x). Likewise, consider a
point (p, q) ∈ H+

0 ∩(UC(x)\UC(x)), for which the condition
(21) is satisfied with no input as q < −α(C(x)), and note
that p>s > 0. We have that:

q + p>u∗ = q − γ∗p>s < −α(C(x)).

Combining these results, we have that condition (21) is
satisfied for all (p, q) ∈ H+

0 ∩ UC(x). Additionally, for any
(p, q) ∈ H′0 ∩ UC(x), p>s = 0, as s′ is normal to H′0.
As strict separation implies that q < −α(C(x)) for any
(p, q) ∈ H′0 ∩ UC(x), we have q − γ∗p>s < −α(C(x))
and condition (21) is satisfied.

Lastly, we must consider points (p, q) ∈ H−0 ∩ UC(x). To
this end, define the set:

WC(x, γ
∗) =

{
(p, q − γ∗p>s) ∈ Rm × R | (p, q) ∈ UC(x)

}
.

This set can be interpreted as an invertible linear transfor-
mation of the set UC(x) as we have:[

p′

q′

]
=

[
p

q − γ∗p>s

]
=

[
Im×m 0m
−γ∗s> 1

] [
p
q

]
,

implying that WC(x, γ
∗) is compact and convex. Similarly,

define the set:

WC(x, γ
∗) =

{
(p, q) ∈ WC(x, γ

∗)

∣∣∣∣〈[
0m
1

]
,

[
p
q

]〉
≥ −α(C(x))

}
.

Rm

s

Hβ

H0

s
Π(UC(x))

Π(UC(x))

Fig. 1. Projected view of Lie derivative uncertainty set used in proving
feasibility of the (DR-CCF-OP). The green region corresponds to Π(UC(x))
while the orange region highlights the set UC(x) lying above the hyperplane
H. The line Hβ represents the strictly separating hyperplane with normal s
and offset β, while H0 is the hyperplane shifted to pass through the origin.

The set WC(x, γ
∗) is convex and contains points in

WC(x, γ
∗) that are in or above the hyperplane H, or points

that meet with equality or violate (21), respectively.
By the specific choice of γ∗, there exists at least one point

v+ ∈ H+
0 ∩WC(x, γ

∗). Furthermore, by the preceding strict
separation, we have that H′0 ∩WC(x, γ

∗) = ∅. Now assume
for contradiction that H−0 ∩ WC(x, γ

∗) 6= ∅, or that there
exists v− ∈ H−0 ∩ WC(x, γ

∗). As the set WC(x, γ
∗) is

convex and 〈s′,v+〉 > 0 and 〈s′,v−〉 < 0, there is a λ∗ ∈
(0, 1) satisfying

〈s′, (1− λ∗)v+ + λ∗v−〉 = 0,

implying (1 − λ∗)v+ + λ∗v− ∈ H′0 ∩ WC(x, γ
∗). This

contradicts the fact H′0 ∩ WC(x, γ
∗) = ∅, implying that

H−0 ∩WC(x, γ
∗) = ∅, or that condition (21) is satisfied for all

points (p, q) ∈ H−0 ∩UC(x). Combining all previous results,
condition (21) is satisfied for all points (p, q) ∈ UC(x) for
the input u∗ = −γ∗s, ensuring feasibility.

Finally, we show that ψ is continuous. For γ, γ′ > 0 and
(p, q) ∈ UC(x), we have:

min
(p′,q′)∈VC(x,γ′)

∥∥∥∥[ p
q − γp>s

]
−
[
p′

q′

]∥∥∥∥
2

≤
∥∥∥∥[ p
q − γp>s

]
−
[

p
q − γ′p>s

]∥∥∥∥
2

≤ p>s|γ − γ′|,

and similarly, for (p′, q′) ∈ UC(x), we have:

min
(p,q)∈VC(x,γ)

∥∥∥∥[pq
]
−
[

p′

q′ − γ′(p′)>s

]∥∥∥∥
2

≤ (p′)>s|γ − γ′|.

Therefore, the Hausdorff distance between VC(x, γ) and
VC(x, γ′) is bounded by:

dH(VC(x, γ),VC(x, γ′)) ≤

(
max

(p,q)∈UC(x)
p>s

)
|γ − γ′|,

implying VC(x, γ) is Lipschitz continuous (with respect to
the Hausdorff metric) as a function of γ. The support func-
tion of a nonempty, compact, and convex set A ⊂ Rm × R



given by hA : Rm+1 → R is defined as:

hA(v) = max
(p,q)∈A

〈
v,

[
p
q

]〉
Recalling n =

[
0>m 1

]>
, the Hausdorff distance between

two nonempty, compact, and convex sets A,B ⊂ Rm × R
satisfies:

dH(A,B) = max
v∈Sm

|hA(v)− hB(v)| ≥ |hA(n)− hB(n)|.

Noting that ψ can be expressed in terms of the support
function as a composition, with:

ψ(γ) = max
(p,q)∈VC(x,γ)

q = hVC(x,γ)(n),

implies ψ is a continuous function.

V. SIMULATION

To demonstrate the capabilities of the proposed controller,
we run simulated experiments in the setting of an inverted
pendulum, described by the system model:

d

dt

[
θ

θ̇

]
=

[
θ̇

ĝ
ˆ̀ sin(θ)

]
+

[
0
1
m̂ˆ̀2

]
u (22)

with state x = [θ, θ̇]> ∈ R2, gravitational acceleration
estimate ĝ = 10, length estimate ˆ̀= 0.63, and mass estimate
m̂ = 0.63. We assume that the unknown true system has
modified inverted pendulum dynamics given by:

d

dt

[
θ

θ̇

]
=

[
θ̇

g
` sin(θ)

]
+

[
0

1−0.75 exp(−θ2)
m`2

]
u (23)

with gravitational acceleration g = 10, length ` = 0.7, and
mass m = 0.7. We note the inclusion of a state-dependent
input gain given by 1−0.75 exp(−θ2), which attenuates the
input most significantly when the pendulum is vertical.

Consider the functions V : R2 → R+ and h : R2 → R,
given by V (x) = x>Px and h(x) = x>Px− c with

P =

[√
3 1

1
√
3

]
(24)

and a constant c = 0.2. Noting that both the system model
(22) and the true system (23) are feedback linearizable, V

and h satisfy the CCF condition (4) for the comparison
function α(r) = λmin(Q)r/λmax(P), for both the model and
the true system (implying Assumption 1 is met). In particular,
V may serve as a CLF, and h as a CBF.

We explore data-driven stability and safety with this
system for different methods of gathering training data. We
compare the robust data-driven controller with an oracle
controller, which knows the true model, and a nominal
controller, which treats the estimated model as if it were true,
both specified via the (CCF-QP). In each setting, the system
model underestimates the pendulum mass and length and
assumes that the input gain is independent of the state. As a
result, the Lipschitz constants of the errors can be bounded
by Lf̃ = g|`− ˆ̀|/(`ˆ̀) and Lg̃ = 0.75

√
2 exp(− 1

2 )/(m`
2).

For the stability experiment, we generate data sets by
gridding the state and input spaces. We consider θ in the
interval [0, 1] and θ̇ in the interval [−0.25, 0.25], with grid
sizes εθ = εθ̇ = 1

40 . We generate a sparse data set by con-
sidering u ∈ {−5,−1} and a dense data set by considering
u ∈ {−5,−3,−1, 1, 3, 5}. We set the regularizing controller
kd to be a feedback linearizing controller designed using the
estimated dynamics and linear gains kp = 1/2 and kd =√
3/2. The system is simulated from the initial condition

x = [0.8, 0.1] for 10 seconds, with control inputs specified at
100 Hz. For the safety experiment, we consider a similar pair
of sparse and dense data sets with θ in the interval [0, 0.25]
and θ̇ in the same interval as the stability experiment, the
same grid sizes, and the same sets of control inputs. The
system is simulated with no regularizing controller kd ≡ 0
from the initial condition x = [0.1, 0.1] for the same amount
of time and the same control input frequency.

The results of the simulations may be seen in Figure
2. In both experiments, we see that the nominal controller
fails to achieve the specified objective, while the oracle
controller succeeds. Furthermore, we see that the data-driven
controllers perform nearly identically for both the sparse and
dense input data sets. This similarity indicates that greater
variety in input directions and coverage of the input space
by the data set are not needed to achieve satisfactory closed-
loop behavior.

0

1

2
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(x
(t
))

Stability

−0.2

0.0

0.2
Safety

0 2 4 6 8 10
t (sec)

−5

0

u
(t
)

0 2 4 6 8 10
t (sec)

−4

−2

0

oracle
nominal
R-dense
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Fig. 2. The value of the certificate function C(x) (top) and input u (bottom) over time for the stability (left) and safety (right) experiments. We compare
the behavior of an oracle controller which has access to the true dynamics (black square), a nominal controller which assumes that the estimated dynamics
are true (red diamond), a robust controller using dense input data (blue triangle), and a robust controller using sparse input data (green circle). For stability,
the desired behavior for C(x) is to converge towards 0, while for safety it is to remain nonpositive.



VI. CONCLUSION

We propose a novel approach for robust data-driven con-
trol synthesis under model uncertainty and show that good
performance can be achieved when training data provides
sufficiently dense coverage of the state space with targeted
excitation in input directions. This approach is well posi-
tioned to make progress on both theoretical and application-
oriented problems at the intersection nonlinear control and
non-parametric machine learning. Future work includes in-
vestigating strategies for data segmentation to enable effi-
cient computation for closed-loop control and understanding
continuity and recursive feasibility of the controller.
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