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Abstract—Controller design for nonlinear systems with Control
Lyapunov Function (CLF) based quadratic programs has re-
cently been successfully applied to a diverse set of difficult control
tasks. These existing formulations do not address the gap between
design with continuous time models and the discrete time sampled
implementation of the resulting controllers, often leading to poor
performance on hardware platforms. We propose an approach to
close this gap by synthesizing sampled-data counterparts to these
CLF-based controllers, specified as quadratically constrained
quadratic programs (QCQPs). Assuming feedback linearizability
and stable zero-dynamics of a system’s continuous time model,
we derive practical stability guarantees for the resulting sampled-
data system. We demonstrate improved performance of the pro-
posed approach over continuous time counterparts in simulation.

I. INTRODUCTION

Nonlinear control methods offer promising solutions to
many modern engineering applications. However, theoretically
sound controller designs often fail to achieve desired behaviors
when deployed on real systems. Thus, it is critical to under-
stand the discrepancies between theoretical design and practi-
cal implementation mathematically, and to design controllers
that close these gaps. Specifically, we address the challenges
in designing controllers with continuous time models and
realizing them with discrete time sampling implementations.

Feedback linearization is a powerful tool in nonlinear
control design, enabling the algorithmic synthesis of con-
trollers for a wide class of mechanical and electrical systems
[L]. Moreover, feedback linearization provides a constructive
method to find Control Lyapunov Functions (CLFs) [2]] for
continuous time systems. This fact has been used to formulate
stabilizing controllers through Quadratic Programs (QPs) [3l],
[4], seeing use in several applications such as robotics [3]] and
autonomous vehicles [6]. Despite these successes, translating
these controllers to hardware platforms often requires addi-
tional effort to overcome the degradation of performance and
introduction of chatter caused by sample frequency limitations.

We propose an extension of the preceding nonlinear con-
troller designs to the sampled-data setting [7]], in which control
inputs are specified at discrete sample times and held constant
between sequential sample times (referred to as a zero-order
hold). The resulting evolution of such systems between sam-
ple times is described by discrete time models, for which
exact representations can rarely be derived, motivating the
synthesis of controllers with approximate discrete time models.
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The foundational work in [8]], [9] established a sampled-
data framework for translating stability guarantees for an
approximate discrete time model to the exact discrete time
model. Resulting sampled-data synthesis methods [[LO], [IL1],
[12] often demonstrate improved performance over continuous
time designs [13]], many using a simple Euler approximate
discrete time model [14], [10] or CLFs [15], [16]. Notably,
optimization-based controllers synthesized using CLFs found
via feedback linearization have not yet been considered.

The relationship between feedback linearizability and sam-
pling has been investigated [[L7]], [18], [19], [20]. Much of this
investigation has focused on whether feedback linearizability
of a system’s continuous time dynamics implies feedback
linearizability of the exact discrete time model of the system
(a fact that requires strict structure of the continuous time
dynamics). Even with Euler approximate discrete time models,
a continuous time feedback linearizable system must be first
expressed in appropriate coordinates before sampling and
approximating to ensure the approximate model is feedback
linearizable in the discrete time sense [[19]. This requirement
is also seen with higher-order approximate models obtained
via Taylor expansion [21]. The work [22], [23], [24] studies
the zero-dynamics that arise due to sampling and higher-order
approximations, but not the impact of sampling on the stability
of existing continuous time zero-dynamics.

We make two main contributions in this work. First, we
formally integrate feedback linearization and zero-dynamics
with Euler approximate discrete time models for sampled-
data systems via the results in [8]. In particular, we demon-
strate that systems with feedback linearizable continuous time
dynamics and locally exponentially stable zero-dynamics can
be rendered practically-stable via a continuous time feedback
linearizing controller when the inputs to the system are im-
plemented with a zero order hold. The often local nature of
stability of zero-dynamics requires modification of the global
results in [8]]. Second, we extend the preceding result to
optimization-based controllers using CLFs [4] synthesized via
feedback linearization. In Section [V] we propose a controller,
specified via a convex, quadratically constrained quadratic
program (QCQP), that replaces the standard affine constraint
on the time derivative of the CLF with a quadratic constraint
on the decrease of the CLF over a sample period (as approxi-
mated by the Euler discrete time model). We demonstrate the
improved performance of this controller over continuous time
CLF formulations with sample frequency limitations.

II. PRELIMINARIES

Throughout this work, we will consider the nonlinear con-
trol system governed by the differential equation:

x = f(x) + g(x)u, (1)



for state signal x and control input signal u taking values in
R™ and R™, respectively, drift dynamics f : R” — R"”, and
actuation matrix function g : R™ — R"™*™. Consider an open
subset Z C R™ x R™ and its projection onto the state space
XE{xeR"|JuecRmst. (x,u) € Z} C R". Assume
there exists Tax € Ry (the strictly positive reals) such that
for every state-input pair (xg,up) € Z, there exists a unique
solution ¢ : [0, Tiyax] — R™ satisfying:

p(t) =f(p(t) +8le(t))ug Vt € (0,Tmax), (2
©(0) = xo. 3)

This enables the following reachable set definition:
D2 {xeR"|3(x0,u9) € Z, t € [0, Tinax] s.t. x = (1)},

where X C D. Given an h € (0, Tinax), we define a controller
k : X — R™ as h-admissible if for any state xo € X, the
state-input pair (xo, k(xo)) satisfies (xg,k(xg)) € Z and the
corresponding solution ¢ satisfies ¢(t) € X for all ¢t € [0, h].

Remark 1. This requirement on h-admissible controllers en-
sures that in the sampled-data context, the closed-loop system
is forward complete and its evolution may be described by
iterative solutions to Z)-(3). Though verifying h-admissibility
of a controller may be intractable, assuming that a controller is
h-admissible and renders the set X" invariant is relatively weak
as A is defined to ensure the continued existence of solutions
rather than reflecting a task-specific set.

Feedback linearization offers a tool for the synthesis of
stabilizing controllers for nonlinear continuous time systems,
and will serve an important role in constructing optimization-
based controllers for sampled-data nonlinear systems. We
consider systems with zero-dynamics that are independent of
the input, such as systems described by the Euler-Lagrange
equations [235], but more details may be found in [1]]:

Definition 1 (Feedback Linearizability). The system (I) is
feedback linearizable if there exist an open set £ C R™ such
that D C &, a diffeomorphism ® : £ — R"™ between £ and an
open subset of R", a controller ke, : X' X R 5 R™, k< m,
a controllable pair (A, B) € RY*7 x R¥k ~ < n, and a
function q : (D) — R"7 satisfying:

An+Bv
a(§)

for all states x € X and auxiliary control inputs v € R*, where
n€RY, ze R" 7, and £ € R" satisfy (n,z) = & = ®(x).
Here D® denotes the derivative of ®. Note that if v = n,
the system is full-state feedback linearizable, and q does not
appear in (@). The corresponding system in normal form is:

e |1 = 8] 4[5 @ ralon ©
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D& () (£(x) + g(x)km(x, v)) = [ ] R

for normal state signal &, output signal 7, zero-coordinate
signal z, and control input signal u, with f, : (D) — R
and g, : ®(D) — RY*™ defined such that f; : (D) — R"
and g¢ : ®(D) — R™*™ satisfy:

D®(®(£))(£(@71(€)) + (@' (€))u) = £¢(€) + ge(&)u,

for all £ € ®(D) and u € R™.

Remark 2. As shown in [19], feedback linearizability of a
continuous time system does not guarantee feedback lineariz-
ability of the resulting sampled-data system, even when using
approximate discrete time models. In particular, this property
may be lost due to a change of coordinates. The preservation
of this property motivates studying the evolution of the normal
form system in the sampled-data context.

As we will consider the control design process for the
normal form system (3), it is useful to define the set:

Ze={(6u) € ®(X) xR™ | (@7'(6),u) € 2},  (6)

noting that for every state-input pair (§,,ug) € Z¢, there
exists a unique solution v : [0, Tinax] — R™ satisfying:

P(t) = fe(P(1) + ge((1))uo  Vt € (0, Timax), (7
P(0) = &o. (3)

For h € (0,Tmax), a controller k : ®(X) — R™ is an h-
admissible controller if the corresponding controller k' : X —
R™ given by k'(x) = k(®(x)) for all x € X is h-admissible.
A controller K,y : ®(X) — R™ is an h-admissible auxiliary
controller if k : ®(X) — R™ given by:

k(&) = ki (@7 (£), Kaux(£)), 9)

is an h-admissible controller.

III. SAMPLED-DATA CONTROL

This section provides a review of the sampled-data control
setting, in which inputs are applied to the system with a zero-
order hold. In this setting, the set of possible sample periods
is given by I = (0, Tyax|. Given a sample period h € I and
an h-admissible controller k : ®(X') — R™, the normal state
and control input signals in (@) satisfy:

u(t) = k(&(tx))

with sample times satisfying ¢4 — t, = h for all k € Z,
(the non-negative integers). The evolution of the system over
a sample period is given by the exact state discrete map F}™
Z — D and exact normal discrete map F$* - Z¢ — ®(D):

Vt € [tk,tk+1), (10)

h
F}7*(x0,u0) = Xo +/0 [£(p(7)) + 8l (7))uo] dr, (11)

h
FoE (€, o) = € + /0 Fe () + ge ((7))uo] dr(12)

for all state-input pairs (xg, ug) € Z and all normal state-input
pairs (&y,up) € Z¢. The exact maps are related by:

Fy % (&, u0) = B(F*(®71(&), uo)),

for all normal state-input pairs (£, ug) € Z¢.

13)

Remark 3. While an equivalence between the exact state
discrete map and exact normal discrete map is achieved via
the diffeomorphism @, it is useful to define both maps as the
notion of stability we consider for sampled-data systems is
defined for a particular exact map.

We call {kj, : ®(X) — R™ | h € I} a family of admissible
controllers if there is an h* € I such that for each h € (0, h*),
kj, is h-admissible. This enables the following definition:



Definition 2 (Exact Families). For a family of admissible
controllers {kj, : ®(X) — R™ | h € I}, we define the exact
state family {(kj, o ®,F; ™) | h € I} and exact normal family
{(k, F5%) | h e I} of controller-map pairs.

For all h € I such that kj;, is h-admissible, the recursion
€ = F5(&kn(g,) € ®(X) is well-defined for all
&, € ®(X) and k € Z,.. In practice, closed-form expressions
for these maps are rarely obtainable, suggesting the use of
approximations in the control synthesis process. While there
are many approaches to approximating this map, we will use
the following approximation of the exact normal discrete map:

Definition 3 (Euler Approximation Family). For every sample
period h € I, define the map FZ’E 1 Z¢ = R" as:

F (&0, 10) = & + h(fe (&) + e (€0) o),
for all (§,,u9) € Z¢. For a family of admissible controllers
{kp, : ®(X) — R™ | h € I}, the corresponding Euler approx-
imation family of controller-map pairs is {(kp,, F‘,If) | h eI},

(14)

The motivation behind this particular approximation is pre-
serving the strict feedback nature [26] of the normal form.
For h € I, we can also define F;'"7 : Z¢ — R” and F;” :
®(X) — R"7 such that for all (§,u) = ((n,2z),u) € Z:

e ) = [FRTE ] _ [+ hlEn(€) + gnlE)u)
R A R KA

Remark 4. There may be an i € I such that the controller kj,
is h-admissible but the recursion &, | = FZ£ (&, kn(&L)) is
not well-defined for all £, € ®(X) and k € Z,. This is due
this map enabling &, ¢ ®(X) for some k£ > 0. While our
results do not need the recursion of the Euler approximation
family to be well-defined, this can be achieved by extending
the domains of fg, ge, and kj, to R™.

Defining class K () and KL (KL) comparison func-
tions as in [2], [8], the following definition characterizes how
accurately an approximate map captures the exact map:

Definition 4 (One-Step Consistency). A family {(kp,Fy) :
h € I} is one-step consistent with {(k, Fzs) | h € I} if, for
each compact set K C ®(X), there exist a function p € K
and h* € I such that for all £ € K and h € (0, h*), we have:

[FCE(E ki (€)) — Fu(€, kn(€))]| < hp(h). (15

The next lemma (modifying [8 Lemma 1], see appendix)
relates Euler approximation families to one-step consistency:

Lemma 1. Suppose f¢ and g¢ are locally Lipschitz continuous
on ®(X). Consider a family of admissible controllers {ky, :
®(X) —» R™ | h € I} and suppose that for any compact set
K C ®(X) there exist h* € I and a bound M € Ry such
that for every sample time h € (0,h*), the controller ky, is
bounded by M on K. Then the family {(k,, F&%) | h € I}
is one-step consistent with the family {(kp, Fzg) | h eI}

We note that if f, g, and D® are locally Lipschitz continuous
on X, the first condition of Lemma [I]is met. We consider the
following stability property, defined for both the exact state
discrete map and the exact normal discrete map:

Definition 5 (Practical Stability). Let § € KL, and N C R"”
be an open set containing the origin. A family {(k,,Fy) :
h € I} is (B, N)-practically stable if for each R € Ry,
there exists an A* € I such that for each sample period i €
(0, h*), initial state {, € N, and number of steps k € Z, the
recursion ¢y = F, (. kn(Cy)) is well-defined and:

1€k Il < B(lIColl kh) + R.

The following lemma relates the practical stability of the
exact normal family and the exact state family. Importantly,
it justifies considering the sampled normal form dynamics,
which can be feedback linearized, rather than the sampled state
dynamics that may not be feedback linearizable.

(16)

Lemma 2. Suppose that 0,, € X and ®(0,,) = 0, and that
for any compact sets K, K’ C R™, ® and ® ' are globally
Lipschitz continuous on K' N X and K N ®(X), respectively.
If the exact normal family {(kh,FZ’g) | h € I} is (B,N)-
practically stable, then there exist 3’ € KL and a bounded
open set N' C R™ with 0,, € N’ such that the exact state
family {(k, o ®,F;*) | h € I} is (8, N')-practically stable.

A proof is provided in the appendix. The following class of
Lyapunov functions is useful in certifying practical stability:

Definition 6 (Asymptotic Stability by Equi-Lipschitz Lyapunov
Functions). Consider a family of admissible controllers {ky, :
®(X) - R™ | h € I}. A family {(kp,Fp) | h € I} is
asymptotically stable by equi-Lipschitz Lyapunov functions if
for some open set N C ®(X') containing the origin and any
compact set K C N, there exist h* € I, comparison functions
ag, 00 € Ko and ag € K, a family {V}, : R" — R, | h €
(0, h*)}, and a Lipschitz constant M € R such that:

a1([[€11) < Vi(€1) < az([€1])), (17)
Vi(Fn(€2,kn(€2))) — Va(€s) < —has([|€1]), (18)
[Vh(€3) — V(&) < M|1&5 — &4l (19)

for all £; € R™, normal states §&; € N and &5,§, € K, and
sample times h € (0, h*). Here R denotes non-negative reals.

These functions link one-step consistency to practical stabil-
ity in the next lemma (modifying [8, Thm. 2], see appendix):

Lemma 3. Consider a family of admissible controllers {kp, :
®(X) — R™ | h € I}. If the corresponding Euler approxi-
mation family {(kp, Fzg) | h € I} is asymprotically stable by
equi-Lipschitz Lyapunov functions, then there exist 5 € KL
and a bounded open set U C ®(X) with 0,, € U such that
the family {(kh,FZ’g) | h € I} is (B, N)-practically stable
for any open set N C U with 0,, € N.

IV. STABILIZATION

In this section we present our main results establishing
feedback linearization as a method for practically stabilizing
sampled-data nonlinear systems. The first result builds on [27]]
to make a claim on the stabilizability of the output dynamics:

Lemma 4. Given a feedback linearizable system satisfying (@),
consider K € R¥*7 such that Aq £ A — BK is Hurwitz.



Let P,, € ST, (positive-definite -y x ~y matrices) solve the
continuous time Lyapunov Equation:

A Pn + P ACI - Q’Iﬂ (20)

for some Q,, € S++' Define the function V, : RY — R, as
Vp(n) = 0" Pyn for all n € RY. For any c € (0,1), there
exists hy € I such that for any ny € R, £ = (n,2z) € ®(X),
and h € (0, hy)), there exists an input u € R"™ such that:

Amin(Pn)HTIOHS < V’rl(no) < AmaX(P'rl)HnOH%v
Va(F3(€,0)) — Vip(m) < —hcAmin(Qq)|Inlf5-

Here, Amin, Amax denote minimum and maximum eigenvalues.

Proof. The bounds in 1)) follow from the definition of V.
Define the auxiliary controller k,.x((n,2z)) = —Kn for all
(n,z) € ®(X). For the controller k defined in (9), we have:

Vo (F,"(6,k(€))) = Va(m) = Vo (Ty + hAc)n) — Vip(m)

2n
(22)

=hn' (AP, + PprAg +hA P, ALY
< _h()‘min(Qn) hAmaX(A P Acl))HnH%
for all £ = (n,z) € ®(X) and h € I. Picking hy, € I with:
h:, S (1 - ) mln(Qr/)/)\m'}x(A P Acl) (23)

implies that for all h € (0, hy] and § € ®(X), the input k(&)
satisfies (22). O

We call the function V;; a discrete time (CLF) for any Euler
approximate model of the output dynamics with i € (0, hy].
For each h € (0, hy,), define Uy, : @(X) — P(R™) as

Un(&) ={ueR™| (£ u) € Z¢; u satisfies 22) for h, &},

for all £ € ®(X), where P denotes the powerset. The next
result connects these functions to continuous time stability of
the zero-dynamics, implying the conditions of Lemma [3] are
met for controllers other than feedback linearizing controllers:

Theorem 1. Let Vy, and hj, be defined as in Lemma {4} and
assume that q is continuously differentiable and the zero-
dynamics system governed by the differential equation:

q(O"/a Z)a

for zero-coordinate signal z is locally exponentially stable to
the origin. Let {ky, : ®(X) — R™ | h € I} be a family of
admissible controllers satisfying kp(€) € Un(&) for all h €
(0,h%] and € € ®(X). Then the family {(ky,F}>°) | h € I}
is asymptotically stable by equi-Lipschitz Lyapunov functions.

(24)

Z:

Proof. The local exponential stability of implies that for
any Q, € S, and d € (0, 1), there exist an open neighbor-
hood of the origin N C R"™7, an h; € I, a P, € S ,, and
a quadratic Lyapunov function V, : R"™" — R, defined as
V,(z) =z P,z for all z<€ R"™" and satisfying:

Arrlin(Pz)Hzong S Vz(ZO) S )\max(Pz)Hzongv (25)
VZ(FZ’z((O%Z))) —Va(z) < _hd>\rnin(Qz)HZH§7 (26)

for all zg € R"™7, z € N, and h € (0, h}). Construction of
V,, follows the steps of Lemma [4] with the linearization of q at
the origin. Let o € R4 be a coefficient to be specified later.

Let Vi, ¢, and hj; be defined as in Lemma 4, and define the
composite Lyapunov function V : R® — R as:

V(&) = aVy(n) + Va(2), 27)

for all £ = (n,z) € R™. First, note that (ZI) and (23] imply:
min {UAmin(Pn)7)‘min( )}”5”% < V( )
< max {U)\max(P’n) max( )} ||£||2’ (28)

A

m
for all £ € R™, implying is met. Second, note that:

IVV(&)ll2 < 2 (0Amax (Pn)[1l2 + Amax(P2)[12]]2)
< 2(ull€llz + pll€ll2) = 4pli€ll2,

for all £ = (n,z) € ®(X), implying that for any compact set
K C ®(X), (I9) is met as we have:

V€D - V(e < (maxlell ) 16 - €l @)

for all £;,&, € K. Third, define a bounded open set Ng C R"
with closure cl(Ng) C ®(X) N (RY x N), let Lg € Ry
be a global Lipschitz constant of q on Ng, and let A =
min {hy, h;}. For all £ = (n,z) € N¢ and h € (0, h}), note:

V(FPE(E, kn(€)) — V(€)
= o (Vn(F (€, kn(€))) — Vip(m)) + Va(F*(€)) — Val(2)
< —~0heAmin(Qn) 113 + Va(F*((0,,2))) — Va(2)
+ Vo(F*((n,2))) — <F“<<o 7))
< —~0heAmin(Qn) 113 — hdAmin(Qa) 1213
+2hz" P,(q((n,2)) — q((0,,2)))

+h*(a((n,2) "PLa((n,2)) — a((0,,2)) "P,q((0,,2)))
< _UhC)‘min(Qn)HnH% - hd}‘min(QZ)HZH%

+ 2hAmax (Pz) L q||"7||2HZH2+h2)‘maX(PZ)LqH€H§

_ g [Imllz|  fwn(osh)  —wsx | [lnll2

- "[nsz {wx wz<h>] [||Z||2}’ G0

£Q, (h)

where wy(0,h) = 0cAnin(Qn) — ”MAmax(Pz)Lq, wx =
Amax(Pz)Lq, and wy(h) = dAmin(Qz) — hAmax (P2) Lq. Pick
h3 € (0, h7] such that by < dA\nin(Q2)/wx and fix o with:

o> (wi Jwa(h3) + h3Amax(P2) Lq) / (Amin (Qn)),

to ensure that Q,(h) € S}, for all h € [0,h5]. The
composition Ay, o 2, is continuous and R | -valued for all
h € [0, h3] as €2, is an affine function. Therefore:

V(FE (€, kR (€))) — V() < —hAmin (s (h)[|€]13
<, min_ w200 €13

for all £ € N¢ and h € (0, hj]. O

&1y

This result implies that if there exists an hg € I such that
the controller k used in Lemma [] is ho-admissible, the exact
family {(k Fzg) | h € It is (B, N)-practically stable for
some 5 € KL and open set N C ®(X) with 0,, € N.



V. OPTIMIZATION-BASED SAMPLED-DATA CONTROL

As motivated in [2, p. 6], the performance of a feedback
linearizing controller can be improved upon by optimizing
control inputs subject to stability constraints imposed via the
CLF V,, found in Lemma [d The existence of the feedback
linearizing controller ensures the function V;, is also a CLF
for the continuous time output dynamics in (5). For sample
period h € I, continuous time design yields a controller
ki : ®(X) — R™ specified by the following QP:

k(&) = argmin ||ul|3 (CLE-QP)

uer™
st VV(n) T (£5(€) + gn(€)u) < —Amin(Qn)[ml3,

for all £ = (n,z) € ®(X). This controller often displays
degradation in performance with sample frequency limitations,
motivating the specification of a sampled-data controller. For
h € (0, hy], using the Euler approximate model F';", consider
a controller kj“® : ®(X') — R™ specified by the following
quadratically constrained quadratic program (QCQP):

Ky (g) = argmin [ull3 (CLE-QCQP)
ue m

st Vp (B (€, ) — Vy(n) < —hC)\min(Qn)”"?”%
= argmin [|u]3
ucR™

st ul Ap(€)u+22,(&) Tu+1,(¢) <0,

for all £ = (n,z) € ®(X) where Ay, : ®(X) — ST (positive
semi-definite m x m matrices), A, : ®(X) — R™, and I, :
®(X) — R are defined with Py, Qy, and ¢ from Lemma [}

An (&) = hgn (&) "Prgy(8), (32)
An(€) = gn (&) "Py(n + hiy (), (33)
1h(&) = £(€) "Pp(2n + hfn(€)) + cAmin(Qn) 03, (34)

for all £ = (n,z) € ®(X). For any & € ®(X), the input
k(&) is in the feasible set of the corresponding optimization
problem, and as the feasible set is closed and the |k(&)]|3-
sublevel set of the continuous objective function is compact,
there exists a minimizer in this sublevel set. Since the objective
function is strictly convex and the feasible set is convex, this
minimizer is unique and can be found in polynomial time [28]].

For each h € (hy, Tiax|, define kil“® . $(X) - R™
arbitrarily. If {k;°® | h € I} is a family of admissible
controllers, then the exact family {(ki“® F$%) | h e I} is
(8, N)-practically stable for some 5 € KL, and open set
N C ®(X) by Theorem [I] This follows as the feasibility
of the feedback linearizing control input implies the family
{(kchp,FZ’s) | h € I} is asymptotically stable by the same
Lyapunov functions as the family {(k, Fzg) | h eI},

To illustrate the advantage of sampled-data design, consider
the following system with exponentially stable zero-dynamics:

M=, 0o =10sin(n)+u, 2=n%—z, (35)
where (11,72), 2, and u denote the output, zero-coordinate,
and control signal, respectively. For K = [1 /2 3/ 2} ,
Qn, =1y, ¢=0.5, h = 0.2, and initial condition (1,0, 1), the

(CLF-QP) fails to stabilize the system, while the (CLF-QCQP)

stabilizes the system (see Figure [I)).

)
2.00 . m n2 o Z oy o o %,
°, ..:’~~ S
a T, o o
Q 100 s X 0 o )
! i (. -
w
|
O
0.00
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
1.00
) . z
o 075 m 2
o
O o050
@
w025
|
O 600
-0.25

0.0 25 5.0 75 10.0 12,5 15.0 17.5 20.0
t

Fig. 1. With inputs applied via a zero-order hold, the (CLF-QP) does
not stabilize the system (33) (Top), while the does
(Bottom). Simulation code listed at https://bit.ly/CLF-QCQP.

VI. CONCLUSIONS

We presented an approach for sampled-data control synthe-
sis using the feedback linearizability of a system’s continuous
time model to yield a discrete time CLF for the Euler ap-
proximate discrete time model. We specify a controller with
this CLF via a convex optimization problem that improves
performance over a continuous time counterpart. Future work
will extend this work to safety and Control Barrier Functions.

PROOFS OF LEMMAS

Proof of Lemma I} Consider a compact set K C ®(X) and
corresponding h* € I and M € R, 4, and fix a sample period
h € (0, h*). By assumption, k;, is bounded on K, and since
fe and g¢ are continuous, fg and g¢ are also bounded on K,
implying there exists a bound M’ € R, with:

£ (£2) + 8e(2)kn (1) < M,

for all normal states £;,&, € K. As f¢ and g are locally
Lipschitz continuous over the compact set /<, it follows that
fe and g¢ are globally Lipschitz continuous over K. Therefore:

||f£(§2) + g£(£2)kh(£1) - (f§(€1) +8(&1)kn(€1))ll
< |Ife(&2) — fe(&)Il + llge(€2) — e (€1)lIkn (&)
< (Lge + Lg M)[1€; — &1l = p([[€2 — &1lD)

for all states &;,&, € K, where Lg,, Lg, € Ry are Lipschitz
constants for f¢ and g, respectively, and p € K., satisfies
p(r) = (Lg, + Lg M)r for all 7 € R, The proof proceeds as
the proof of Lemma 1 in [§]] by substituting 2" = N(K,¢) C
®(X), with proper containment implied for some € € Ry as
®(X) is open, and substituting 77 = min{h*, e/M'}. O
Proof of Lemma[Z) Let N' C ® '(N) be a bounded open
set satisfying cl(N') C X. As cl(IN') is compact and P is a
homeomorphism between X’ and ®(X), we have ®(cl(N')) C
®(X) is compact and satisfies ®(cl(N')) = cl(®(N')). Fix
R € R, and define the corresponding radii r,7’ € R, as:

r=  max L0+ R, =
Lo 601€]0)

and let B,.,B,» C R™ be closed norm-balls centered at
the origin of radius r and r’, respectively. By assumption,

a
x| [0l


https://bit.ly/CLF-QCQP

we have that @' and ® are globally Lipschitz continuous

over, ®(X) N B, and X N B,» with Lipschitz constants
Lg-1,Le € R, ., respectively. Given an arbitrary R’ €
Ry, pick R < min{R,R'/Lg-1}. Let xo € N’ and let
&, = P(xg) € ®(N') C N. By the (3, N)-practical stability
of the exact normal family, corresponding to R, there exists
an h* € I such that for any sample period h € (0,h*),
the recursion &, FZ’g(Ek,kh(é‘k)) € ®(X) satisfies
1€:1 < B(l&ll, kh) + R, and implies &, € ®(X)N B, for all
k € Zy. Letting x,11 = F; ™ (xi, kp(®(x1))) forall k € Z .,
note that x;, = ®'(&,). It follows that for all k € Z:

Ikl = @ (&) — @7 (00)]| < Lg—1[|€), — 0,
< Lg-1(B([[&olls kh) + R)
= Lg-1(B([|®(x0) — ®(0,)|, kh) + R)
< Lg-1(B(La|xo — 0,4, kh) + R) < B'(|[xol|, kh) + R,

where §'(r,s) = Lg-18(Ler, s) for all r, s € R. Therefore,
the exact state family is (8, N')-practically stable. O

Proof of Lemma [3] Consider the open set N C ®(X) and the
functions a1, as € Ko and a3 € K as specified by Definition
[l Let K C N be a compact set with 0,, € int(K). By one-
step consistency and asymptotic stability by equi-Lipschitz
Lyapunov functions, there exist a p € K, a Lipschitz
constant M € R, and an h§ € I such that for all h € (0, h}),
(13), (I7), (I8), and (I9) hold for all £,&,,...,&, € K. There
exists a radius R € R such that the closed norm-ball around
the origin of radius R is contained in K. We modify the claim
of [8, eq. 37] for the local setting in this work as follows:
Claim 1. For any d,D € Ry; with D < a5 (a1(§))
and d < 2a2(R), there exists an h* € (0,hf) such that
for every £ € ®(X) and h € (0,h*), if ||€]] < D and
max { V4 (F};% (€, kn(€))), Va(€)} > d. then:

Va(F}€(€, 10 (€))) — Va(8) < — axs(€]).

In the language of [8]], the restrictions on d and D imply
A < R, and the proof follows by replacing the sets 2~ and
Z1 with K, the constant M with the Lipschitz constant M
given above, and the constants 77 and T35 with hf. Letting
U C K be the open ball of radius a; " (a1(a; ' (a1(£)))),
the modified claim may be used to prove the existence of
a B € KLy such that the family {(k,,F$®) | b € I} is
(8, N')-practically stable for any open set N’ C U containing
the origin by following the proof of Theorem 2 in [S]]. O

(36)
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