Safety-Critical Event Triggered Control via Input-to-State Safe Barrier Functions

Andrew Taylor¹ Pio Ong² Jorge Cortés² Aaron Ames¹

 ¹Computing and Mathematical Sciences California Institute of Technology
 ²Mechanical and Aerospace Engineering University of California at San Diego

December 17th, 2020 Control & Decision Conference (CDC) 2020

Control in the real world is hard

But: Pretty when it works...

[1] R. Grandia, **A. J. Taylor**, M. Hutter, A. D. Ames, Multi-Layered Safety for Legged Robotics via Control Barrier Functions and Model Predictive Control, 2020.

Claim: Need to Bridge the Gap

Theorems & Proofs

Experimental Realization

Contributions

- Framework for achieving event triggered control for system safety via **Input-to-State Safe Barrier Functions (ISSf-BFs)**
- Analysis of changes in event triggered conditions from stability to safety through a pathological example
- Evaluation of minimum interevent time (MIET) using ISSf-BF trigger law

System Dynamics

Mathematical Model

System Model

System Dynamics

Mathematical Model

System Model

Caltech

Caltech

Caltech

Caltech

Caltech

$$\begin{split} \gamma(\|\mathbf{e}(t)\|_2) &\leq \sigma \alpha_3(\|\mathbf{x}\|_2) \\ 0 &< \sigma < 1 \\ \frac{\partial V}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) &\leq -(\sigma - 1)\alpha_3(\|\mathbf{x}\|_2) \end{split}$$

Trigger Law

$$t_{i+1} = \min\{t \ge t_i \mid \gamma(\|\mathbf{e}(t)\|_2) = \sigma \alpha_3(\|\mathbf{x}(t)\|)\}$$

[3] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, 2007.

Caltech

Caltech

Caltech

Caltech

Caltech

[4] S. Kolathaya, A. Ames, Input to State Safety with Control barrier functions, 2018.

Caltech

[4] S. Kolathaya, A. Ames, Input to State Safety with Control barrier functions, 2018.

Caltech

[4] S. Kolathaya, A. Ames, Input to State Safety with Control barrier functions, 2018.

Caltech

Caltech UC San Diego

Zeroing Barrier Functions

[5] P. Ong, J. Cortés, Event-triggered control design with performance barriers, 2018.

[6] G. Yang, et. al., Self-triggered control for safety critical systems using control barrier functions, 2019.

Caltech UC San Diego

Zeroing Barrier Functions

[5] P. Ong, J. Cortés, Event-triggered control design with performance barriers, 2018.

[6] G. Yang, et. al., Self-triggered control for safety critical systems using control barrier functions, 2019.

Lyapunov Barrier Functions

[7] K. P. Tee, et al., Barrier Lyapunov Functions for the control of outputconstrained nonlinear systems, 2015.[8] X. Shi, et. al, Event-Triggered Adaptive Control for Prescribed Performance Tracking of Constrained Uncertain Nonlinear Systems, 2019.

$$B(\mathbf{x}) = \frac{1}{h(\mathbf{x})}$$
$$\frac{1}{\alpha_1(h(\mathbf{x}))} \le B(\mathbf{x}) \le \frac{1}{\alpha_2(h(\mathbf{x}))}$$

Andrew J. Taylor 11

Zeroing Barrier Functions

[5] P. Ong, J. Cortés, Event-triggered control design with performance barriers, 2018.

[6] G. Yang, et. al., Self-triggered control for safety critical systems using control barrier functions, 2019.

Lyapunov Barrier Functions

[7] K. P. Tee, et al., Barrier Lyapunov Functions for the control of outputconstrained nonlinear systems, 2015.[8] X. Shi, et. al, Event-Triggered Adaptive Control for Prescribed Performance Tracking of Constrained Uncertain Nonlinear Systems, 2019.

$$\begin{split} \iota(\|\mathbf{e}(t)\|_2) &\leq \sigma \alpha(h(\mathbf{x}(t))) \\ 0 &< \sigma \\ \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) &\geq -(1 + \sigma) \alpha(h(\mathbf{x})) \end{split}$$

$$\begin{split} \mathbf{Safety} \ \mathbf{Condition} \\ \iota(\|\mathbf{e}(t)\|_2) &\leq \sigma \alpha(h(\mathbf{x}(t))) \\ 0 &< \sigma \\ \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) &\geq -(1 + \sigma) \alpha(h(\mathbf{x})) \end{split}$$

Trigger Law

$$t_{i+1} = \min\{t \ge t_i \mid \iota(\|\mathbf{e}(t)\|_2) = \sigma\alpha(h(\mathbf{x}(t)))\}$$

$$\begin{split} & \textbf{Safety Condition} \\ & \iota(\|\mathbf{e}(t)\|_2) \leq \sigma \alpha(h(\mathbf{x}(t))) \\ & 0 < \sigma \\ & \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) \geq -(1 + \sigma) \alpha(h(\mathbf{x})) \end{split}$$

Trigger Law

 $t_{i+1} = \min\{t \ge t_i \mid \iota(\|\mathbf{e}(t)\|_2) = \sigma\alpha(h(\mathbf{x}(t)))\}$

Outside Safe Set

$$\begin{split} & \text{Safety Condition} \\ & \iota(\|\mathbf{e}(t)\|_2) \leq \sigma \alpha(h(\mathbf{x}(t))) \\ & 0 < \sigma \\ & \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) \geq -(1 + \sigma) \alpha(h(\mathbf{x})) \end{split}$$

Trigger Law

$$t_{i+1} = \min\{t \ge t_i \mid \iota(\|\mathbf{e}(t)\|_2) = \sigma\alpha(h(\mathbf{x}(t)))\}$$

Outside Safe Set

$$\mathbf{x} \notin \mathcal{C} \implies \alpha(h(\mathbf{x})) < 0$$

$$\begin{split} \mathbf{Safety} \ \mathbf{Condition} \\ & \iota(\|\mathbf{e}(t)\|_2) \leq \sigma \alpha(h(\mathbf{x}(t))) \\ & 0 < \sigma \\ & \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) \geq -(1 + \sigma) \alpha(h(\mathbf{x})) \end{split}$$

Trigger Law

 $t_{i+1} = \min\{t \ge t_i \mid \iota(\|\mathbf{e}(t)\|_2) = \sigma\alpha(h(\mathbf{x}(t)))\}$

Outside Safe Set

 $\iota(\|\mathbf{e}(t)\|_2) \le \sigma |\alpha(h(\mathbf{x}(t)))|$

 $0 < \sigma < 1$

$$\begin{split} \mathbf{Safety} \ \mathbf{Condition} \\ & \iota(\|\mathbf{e}(t)\|_2) \leq \sigma \alpha(h(\mathbf{x}(t))) \\ & 0 < \sigma \\ & \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) \geq -(1 + \sigma) \alpha(h(\mathbf{x})) \end{split}$$

Trigger Law

 $t_{i+1} = \min\{t \ge t_i \mid \iota(\|\mathbf{e}(t)\|_2) = \sigma\alpha(h(\mathbf{x}(t)))\}$

Outside Safe Set

$$\begin{split} \iota(\|\mathbf{e}(t)\|_2) &\leq \sigma |\alpha(h(\mathbf{x}(t)))| \\ 0 &< \sigma < 1 \\ \mathbf{x} \notin \mathcal{C} \implies \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}) \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) \geq -(1 - \sigma) \alpha(h(\mathbf{x})) \end{split}$$

Minimum Interevent Time (MIET)?

Trigger Law $t_{i+1} = \min\{t \ge t_i \mid \iota(||\mathbf{e}(t)||_2) = \sigma |\alpha(h(\mathbf{x}(t)))|\}$

Caltech

Trigger Law $t_{i+1} = \min\{t \ge t_i \mid \iota(\|\mathbf{e}(t)\|_2) = \sigma |\alpha(h(\mathbf{x}(t)))|\}$ Tangential Motion $\dot{\mathbf{e}}(t) \neq \mathbf{0}$ but $\dot{h}(\mathbf{x}, \mathbf{e}) = \mathbf{0}$

Caltech

Trigger Law $t_{i+1} = \min\{t \ge t_i \mid \iota(\|\mathbf{e}(t)\|_2) = \sigma |\alpha(h(\mathbf{x}(t)))|\}$ Tangential Motion $\dot{\mathbf{e}}(t) \neq \mathbf{0}$ but $\dot{h}(\mathbf{x}, \mathbf{e}) = \mathbf{0}$

Stabilization is to an equilibrium point!

Caltech

 \mathcal{C}

 \mathbf{X}

 x_1

Andrew J. Taylor 14

Assume MIET

 $t_{i+1} \ge t_i + \tau$

Caltech

Caltech

Understanding aCBF Conservativeness

Caltech

Strong ISSf Barrier Property

Can we eliminate tangential motion on boundary?

Caltech

Strong ISSf Barrier Property

Can we eliminate tangential motion on boundary?

Strong ISSF Barrier Property

Definition 6 (*Strong ISSf Barrier Property*). An ISSf-BF h satisfies the *strong ISSf barrier property* if there exists $d \in \mathbb{R}$ with d > 0 such that for all $\mathbf{x}, \mathbf{e} \in \mathbb{R}^n$:

$$\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x})\mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) \ge -\alpha(h(\mathbf{x})) + d - \iota(\|\mathbf{e}\|_2),$$

Caltech

Strong ISSf Barrier Property

Can we eliminate tangential motion on boundary?

Strong ISSF Barrier Property

Definition 6 (*Strong ISSf Barrier Property*). An ISSf-BF h satisfies the *strong ISSf barrier property* if there exists $d \in \mathbb{R}$ with d > 0 such that for all $\mathbf{x}, \mathbf{e} \in \mathbb{R}^n$:

$$\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x})\mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e})) \ge -\alpha(h(\mathbf{x})) + d - \iota(\|\mathbf{e}\|_2),$$

Caltech

Event Triggered Safety with MIET

Assumptions Theorem 1 (Trigger Law for Safety Critical Systems). Let h be an ISSf-BF for (6) on a set C ⊂ ℝⁿ defined as in (11a) (11c), with corresponding functions α ∈ K_{∞,e} and ι ∈ K_∞. Let β ∈ K_{∞,e}, σ ∈ (0, 1]. If the following assumptions hold: 1) h satisfies the strong ISSf barrier property for a constant d ∈ ℝ, d > 0, 2) ι is Lipschitz continuous with Lipschitz constant L_ι, 3) there exists F ∈ ℝ, F > 0, such that for all x, e ∈ ℝⁿ: ||f(x, k(x + e))||₂ ≤ F,

4) $\beta(r) \ge \alpha(r)$ for all $r \in \mathbb{R}$,

Caltech

Event Triggered Safety with MIET

Assumptions

Theorem 1 (Trigger Law for Safety Critical Systems). Let hbe an ISSf-BF for (6) on a set $C \subset \mathbb{R}^n$ defined as in (11a)-(11c), with corresponding functions $\alpha \in \mathcal{K}_{\infty,e}$ and $\iota \in \mathcal{K}_{\infty}$. Let $\beta \in \mathcal{K}_{\infty,e}$, $\sigma \in (0, 1]$. If the following assumptions hold:

- 1) *h* satisfies the strong ISSf barrier property for a constant $d \in \mathbb{R}, d > 0$,
- 2) ι is Lipschitz continuous with Lipschitz constant L_{ι} ,
- 3) there exists $F \in \mathbb{R}$, F > 0, such that for all $\mathbf{x}, \mathbf{e} \in \mathbb{R}^n$:

 $\|\mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x} + \mathbf{e}))\|_2 \le F,$

4) $\beta(r) \ge \alpha(r)$ for all $r \in \mathbb{R}$,

Trigger Law

$$t_{i+1} = \min \left\{ t \ge t_i \mid \iota(\|\mathbf{e}(t)\|_2) = \beta(h(\mathbf{x}(t))) - \alpha(h(\mathbf{x}(t))) + \sigma d \right\}$$

Event Triggered Safety with MIET

 $d \in \mathbb{R}, d > 0$

Caltech

Strong Barrier Property via ISSf

Caltech UC San Diego

Extended Set

Theorem 2 (Strong ISSf Barrier Property in Supersets). Let h be an ISSf-BF for (6) on a set $C \subset \mathbb{R}^n$ defined as in (11a)-(11c), with corresponding functions $\alpha \in \mathcal{K}_{\infty,e}$ and $\iota \in \mathcal{K}_{\infty}$. Then the function h_b defined as $h_b(\mathbf{x}) = h(\mathbf{x}) + b$, with $b \in \mathbb{R}$, b > 0, is an ISSf-BF satisfying the strong ISSf barrier property on the set C_b defined as:

$$\mathcal{C}_b \triangleq \{ \mathbf{x} \in \mathbb{R}^n \mid h_b(\mathbf{x}) \ge 0 \}$$
(25)

Strong Barrier Property via ISSf

Extended Set

Theorem 2 (Strong ISSf Barrier Property in Supersets). Let h be an ISSf-BF for (6) on a set $C \subset \mathbb{R}^n$ defined as in (11a)-(11c), with corresponding functions $\alpha \in \mathcal{K}_{\infty,e}$ and $\iota \in \mathcal{K}_{\infty}$. Then the function h_b defined as $h_b(\mathbf{x}) = h(\mathbf{x}) + b$, with $b \in \mathbb{R}$, b > 0, is an ISSf-BF satisfying the strong ISSf barrier property on the set C_b defined as:

$$\mathcal{C}_b \triangleq \{ \mathbf{x} \in \mathbb{R}^n \mid h_b(\mathbf{x}) \ge 0 \}$$
(25)

Corollary 1 (Superset Trigger Law). If h is an ISSf-BF for (6) on the set C satisfying Assumptions (2-4) of Theorem 1, then h_b is an ISSf-BF for (6) on the set C_b satisfying Assumptions (1-4) of Theorem 1 such that the corresponding trigger law renders C_b safe and asymptotically stable with a MIET.

Caltech

Simulation Results

Conclusions

- Input-to-State Safe Barrier Functions offer solution for resource efficient event triggered safety
- Event-triggered set invariance faces challenges not encountered by event-triggered stabilization methods
- Event-triggered stabilization and safety with can be achieved simultaneously using multiple trigger laws.

Thank You!

Safety-Critical Event Triggered Control via Input-to-State Safe Barrier Functions

Andrew Taylor Pio Ong Jorge Cortés Aaron Ames