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Abstract—The efficient utilization of available resources while
simultaneously achieving control objectives is a primary motiva-
tion in the event-triggered control paradigm. In many modern
control applications, one such objective is enforcing the safety of
a system. The goal of this paper is to carry out this vision by
combining event-triggered and safety-critical control design. We
discuss how a direct transcription, in the context of safety, of
event-triggered methods for stabilization may result in designs
that are not implementable on real hardware due to the lack
of a minimum interevent time. We provide an example showing
this phenomena and, building on the insight gained, propose an
event-triggered control approach via Input-to-State Safe Barrier
Functions that achieves safety while ensuring that interevent
times are uniformly lower bounded.

Index Terms—Discrete event systems; Sampled-data control;
Lyapunov methods

I. INTRODUCTION

BALANCING control objectives such as stability and
safety with the efficient use of available resources is

critical in many modern control applications including robotics
and autonomous driving. Event-triggered control provides a
framework that allows the prescription of, in a principled way,
when certain resources (such as actuators, sensors, access to
a communication network with neighboring agents, or even a
human) should be utilized in order to guarantee the satisfaction
of said control objectives efficiently, see e.g., [17], [8], [6],
[14], [11] and references therein. The robustness properties of
the original system enable the opportunistic, rather than con-
tinuous, use of the resources without compromising the control
objective. In this paper we unify event-triggered control with
Input-to-State Safe Barrier Functions (ISSf-BF) to ensure a
system remains safe while efficiently updating its actuation.

Barrier Functions (BFs) [19], [3] have become increasingly
popular as a tool for certifying the safety of a nonlinear
control system [2]. The impact on safety guarantees endowed
by BFs introduced due to actuation errors was quantified
in [9] through the notion of input-to-state safety (ISSf) and
Input-to-State Safe Barrier Functions. As the sample-and-hold
implementation of controllers in the event-triggered context
introduces errors in the actuation, ISSf provides a natural
vehicle for designing trigger laws that guarantee a controller
still achieves safety. The unification of event-triggered control
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with BFs is not a new idea [12], [20], but is often done
with the goal of improving stabilization rather than explicitly
enforcing safety. Other event-triggered formulations [18] on
output- and state-constrainted control have employed Barrier
Lyapunov Functions (BLFs), a special instance of BFs where
the BF is embedded in the Lyapunov function itself, making
safety a direct consequence of stabilization. In contrast, here
we employ general BFs, which allows us to decouple safety
from stability and results in various added benefits, like
simplification of the analysis for other control goals; flexibility
in adding, removing, or switching between constraints; and
less conservative conditions necessary for ensuring safety.
Motivated by the work in [17], we use ISSf-BFs to quantify
the impact of sample-and-hold actuation error on safety, and
design a trigger law for updating actuation to enforce safety.

One challenge in developing event-triggered control ap-
proaches for safety is ensuring that the time between events,
or interevent times, are lower bounded [6], [13], [4]. Such
bounds ensure that the resulting controller and trigger law can
be practically implemented on systems that can not actuate
infinitely quickly. The notion of Input-to-State Stability has
been used to prove the existence of these bounds in the
context of stabilization [10], [17]. In contrast to the task
of stabilization, in the context of safety the dynamics of
the system, and thus the error dynamics, are not required
to vanish as the quantity dictating the triggering of events
vanishes. This can lead to events occurring in rapid succession.
Similar behavior has been observed in the context of output-
based event-triggered control [7]. To address this problem, we
employ a mixed event-triggered mechanism [6], [8] together
with the notion of an input-to-state safe set to achieve lower
bounded interevent times.

The main contribution of this paper is an event-triggered
control paradigm for achieving safety of nonlinear control
systems with uniformly lower bounded interevent times using
ISSf-BFs. Unlike stabilization, utilizing existing tools for
safety in an event-triggered context may require additional
assumptions or relaxations to yield a design that is imple-
mentable on real hardware. To this end, we define the strong
ISSF-BF property, and demonstrate how an arbitrarily small
expansion of the safe set leads to uniformly lower bounded
interevent times. To the best of our knowledge, [20] is the only
result that considers an event-triggered approach for achieving
safety with BFs, but jointly considers it with stabilization and
only addresses interevent time bounds corresponding to the
latter. Our technical approach is the first to ensure safety and
guarantee a minimum interevent time using BFs, and is a first
step towards the development of safe controllers that optimize
the usage of a system’s resources.



II. EVENT-TRIGGERED STABILITY

In this section we discuss event-triggered control and review
the problem of event-triggered stabilization following [17].
This review will motivate our approach for achieving event-
triggered safety presented in Sections IV and V.

Consider the nonlinear control system given by:

ẋ = f(x,u), (1)

where x ∈ Rn, u ∈ Rm, and f : Rn × Rm → Rn is locally
Lipschitz continuous in both arguments on Rn × Rm. We
further assume that f(0,u0) = 0 for some u0 ∈ Rm. Under
the choice of a Lipschitz continuous state-feedback controller
k : Rn → Rm, with k(0) = u0, the closed-loop system
dynamics are given by:

ẋ = f(x,k(x)). (2)

The assumption on local Lipschitz continuity of f and k
implies that for any initial condition x0 := x(0) ∈ Rn,
there exists a maximum time interval I(x0) = [0, tmax) such
that x(t) is the unique solution to (2) on I(x0). In the case
f(·,k(·)) is forward complete, tmax =∞.

In an event-triggered context, the implementation of the
feedback control law k is done by sampling the state at
sequential time instances, t0, t1, t2, . . ., and evaluating the
controller on the corresponding states x(t0),x(t1),x(t2), . . .
Between measurements the control input is held constant:

u(t) = k(x(ti)) ∀t ∈ [ti, ti+1). (3)

The time instances at which the controller is updated are
determined by a state-dependent execution rule or trigger law.
We define the measurement error as:

e(t) = x(ti)− x(t) ∀t ∈ [ti, ti+1), (4)

noting that this in conjunction with (3) implies:

ẋ(t) = −ė(t) = f(x(t),k(x(ti))) ∀t ∈ [ti, ti+1), (5)

The closed-loop dynamics (5) can alternatively be written as:

ẋ = f(x,k(x + e)). (6)

where e ∈ Rn is the measurement error.
Event-triggered stabilization relies on the robustness to

disturbances of the original dynamics, formalized through
Input-to-State Stable Lyapunov Functions (ISS-LF) [16], [15].
Notation: Throughout the paper we make use of the following
basic definitions. A continuous function α : [0, a) → R+,
with a > 0, is class K (α ∈ K) if α(0) = 0 and α is strictly
monotonically increasing. If a = ∞ and limr→∞ α(r) = ∞,
then α is class K∞ (α ∈ K∞). A continuous function α :
(−b, a) → R, with a, b > 0, is extended class K (α ∈ Ke)
if α(0) = 0 and α is strictly monotonically increasing. If
a, b = ∞, limr→∞ α(r) = ∞, and limr→−∞ α(r) = −∞,
then α is extended class K∞ (α ∈ K∞,e)

Definition 1 (ISS Lyapunov Function (ISS-LF)). A continu-
ously differentiable function V : Rn → R+ is an Input-to-
State Stable Lyapunov Function (ISS-LF) for (6), with respect
to measurement errors e, if there exists α1, α2, α3 ∈ K∞ and

γ ∈ K∞ such that for all x, e ∈ Rn:

α1(‖x‖2) ≤ V (x) ≤ α2(‖x‖2), (7a)
∂V

∂x
(x)f(x,k(x + e)) ≤ −α3(‖x‖2) + γ(‖e‖2). (7b)

As in [17], if we define the trigger law to enforce:

γ(‖e(t)‖2) ≤ σα3(‖x(t)‖2) 0 < σ < 1, (8)

the ISS-LF condition (7b) leads to:

∂V

∂x
(x)f(x,k(x + e)) ≤ (σ − 1)α3(‖x‖2), (9)

implying asymptotic stability of (6) to x? = 0. The inequality
in (8) can be enforced by defining the trigger law as:

ti+1 = min {t ≥ ti | γ(‖e(t)‖2) = σα3(‖x(t)‖2)} . (10)

As is typical in event-triggered control formulations, it is
critical to show that such a trigger law does not lead to the
control being updated at arbitrarily close time instances [14],
or that the interevent times {ti+1−ti}i∈N are lower bounded by
a positive constant τ ∈ R, τ > 0, referred to as the minimum
interevent time (MIET). This differs slightly from preventing
the stronger notion of Zeno behavior [6], in which the series of
interevent times converges (implying the lack of a MIET). The
results of [17] ensure that a MIET exists under the trigger (9)
under the assumption of Lipschitz continuity on compacts of
f , k, α, and γ.

III. INPUT-TO-STATE SAFETY

In this section we provide background information on Bar-
rier Functions (BFs) and Input-to-State Safe Barrier Functions
(ISSf-BFs) that will be used to construct an event-triggered
control paradigm that ensures safety.

Consider a set C ⊆ Rn defined as the 0-superlevel set of a
continuously differentiable function h : Rn → R, yielding:

C , {x ∈ Rn : h(x) ≥ 0} , (11a)

∂C , {x ∈ Rn : h(x) = 0}, (11b)

Int(C) , {x ∈ Rn : h(x) > 0}. (11c)

We assume that C is nonempty and has no isolated points, that
is, Int(C) 6= ∅ and Int(C) = C. We refer to C as the safe set.
This construction motivates the following definitions:

Definition 2 (Forward Invariant & Safety). A set C is forward
invariant if for every x0 ∈ C, the solution x(t) to (2) satisfies
x(t) ∈ C for all t ∈ I(x0). The system (2) is safe on C if the
set is forward invariant.

Verifying that the system (2) is safe on a set C can be done
via a Barrier Function:

Definition 3 (Barrier Function (BF)). A continuously differ-
entiable function h : Rn → R is a Barrier Function (BF) for
(2) on a set C ⊂ Rn defined as in (11a)-(11c), if there exists
α ∈ K∞,e such that for all x ∈ Rn:

∂h

∂x
(x)f(x,k(x)) ≥ −α(h(x)), (12)

As shown in [19], the existence of a barrier function for
(2) on a set C is sufficient to prove the safety and asymptotic



stability of C. To consider the impact of measurement errors
on safety, we consider the notion of input-to-state safety [9].

Definition 4 (Input-to-State Safety (ISSf)). Let the signal
e : R+ → Rn be essentially bounded and define ‖e‖∞ =
ess supt≥0 ‖e(t)‖2. The closed-loop system (6) is input-to-
state safe (ISSf) on C with respect to measurement errors e if
there exists γ ∈ K∞ and a set Ce ⊃ C defined as:

Ce , {x ∈ Rn : h(x) + γ(‖e‖∞) ≥ 0} , (13a)

∂Ce , {x ∈ Rn : h(x) + γ(‖e‖∞) = 0}, (13b)

Int(Ce) , {x ∈ Rn : h(x) + γ(‖e‖∞) > 0}, (13c)

such that (6) is safe on Ce.

We refer to C as an input-to-state safe set (ISSf set) if such
a set Ce exists. This definition implies that though the set C
may not be safe, a larger set Ce, depending on e, is safe. If
e ≡ 0, we recover that the set C is safe. This motivates the
following definition of Input-to-State Safe Barrier Functions:

Definition 5 (Input-to-State Safe Barrier Function (ISSf-BF)).
A continuously differentiable function h : Rn → R is an
Input-to-State Safe Barrier Function (ISSf-BF) for (6) on a
set C ⊂ Rn defined as in (11a)-(11c), if there exists α ∈ K∞,e
and ι ∈ K∞ such that for all x, e ∈ Rn:

∂h

∂x
(x)f(x,k(x + e)) ≥ −α(h(x))− ι(‖e‖2), (14)

As shown in [9], the existence of an ISSf-BF for (6) on
C implies C is an ISSf set, implying safety and asymptotic
stability to the set Ce.

IV. TOWARDS RESOURCE-AWARE SAFETY: FROM
LYAPUNOV TO BARRIERS

To more efficiently utilize actuation resources when im-
plementing safe controllers, we seek to unify the preceding
concepts of event-triggered control and input-to-state safety.
In this section we discuss challenges that arise in directly
transferring ideas from event-triggered stabilization to safety.
Given the similarity of the ISS-LF constraint (7b) and the
ISSf-BF constraint (14), it is natural to propose a trigger law
that enforces:

ι(‖e(t)‖2) ≤ σα(h(x(t))) 0 < σ, (15)

implying:

∂h

∂x
(x)f(x,k(x + e)) ≥ −(1 + σ)α(h(x)). (16)

This can be interpreted as allowing the system to more quickly
approach the boundary of the safe set at the expense of
actuation resources. It is important to note that, inside C, it
is possible to satisfy (15) and thus enforce safety, but the
inequality is impossible to satisfy outside C as α(h(x)) < 0 if
x /∈ C. This type of behavior does not arise in the context of
event-triggered stabilization, where convergence is to a point.
One way to solve this issue is to instead define the trigger law:

ι(‖e(t)‖2) ≤ σ|α(h(x(t)))| 0 < σ < 1, (17)

which enforces (16) if x ∈ C and enforces:

∂h

∂x
(x)f(x,k(x + e)) ≥ −(1− σ)α(h(x)), (18)

if x /∈ C. In this formulation, the system is not only allowed to
more quickly approach the boundary, but is also not required
to converge to the set as quickly when outside of the set. This
is a generalization of event-triggered stabilization to a set.

Even with this solution, it is not guaranteed that this trigger
law will have a MIET. Although ruling out Zeno behavior
is not required to guarantee safety, unlike stabilization, it is
important to have a MIET in term of implementation of the
controller (cf. [6]). The key difference between stability and
safety leading to the failure of a MIET to exist for a safe event-
triggered controller lies in how the system dynamics must
behave close to an equilibrium point compared to how they can
behave close to the boundary of the safe set. In stabilization,
continuity of the dynamics requires the dynamics to vanish as
the equilibrium is approached, leading to the error dynamics
in (5) vanishing. In safety, the dynamics close to the boundary
of the safe set need not vanish as the boundary is approached,
such that the error dynamics in (5) need not vanish. We provide
the following example to illustrate how this difference can lead
to a MIET failing to exist for the trigger design (17).

A. Example

Consider the following system:

d

dt

[
x1
x2

]
=

[
x2
−x1

]
+

[
x1
x2

]
u. (19)

for which we wish to ensure the safety of the set C, given by
the 0-superlevel set of the continuously differentiable function
h(x) = 1 − x21 − x22 = 1 − ‖x‖22. The time derivative of
this function along solutions to (19) is given by ḣ(x, u) =
−2(x21 +x22)u, for which the state-feedback controller k(x) =
1
2 (1 − x21 − x22) yields ḣ(x) = −(x21 + x22)h(x) ≥ −h(x),
which implies h is a valid BF for the set C.

In an event triggered context, the closed-loop dynamics of
the system are then given by:

ẋ(t) =

[
k(x(ti)) 1
−1 k(x(ti))

]
x(t), (20)

for each time t ∈ [ti, ti+1). This leads to the time derivative
of h along solutions to (20) being given by:

ḣ(x(t), e(t)) = −‖x(t)‖22h(x(ti)) = −‖x(t)‖22h(x(t) + e(t))

for each time t ∈ [ti, ti+1), where e(t) = x(ti)−x(t). To see
that the BF h is in fact an ISSf-BF, we note its time derivative
can be bounded as follows (we omit the time dependence):

ḣ(x, e) = −‖x‖22h(x + e)

= −‖x‖22(1− ‖x‖22 − 2x>e− ‖e‖22)

≥ −‖x‖22(1− ‖x‖22)− 2‖x‖32‖e‖2
≥ −(1− ‖x‖22)− 2‖x‖32‖e‖2
≥ −h(x)− 2r3‖e‖2,

for ‖x‖2 ≤ r. Given that h is an ISSf-BF on some domain
containing the unit circle (choose r > 1), the trigger law



enforcing (17) is given by:

ti+1 = min{t ≥ ti | 2r3‖e(t)‖2 = σ|h(x(t))|}, (21)

with 0 < σ < 1. This will guarantee that C is safe as:

ḣ(x, e) ≥

{
−(1 + σ)h(x), ‖x‖2 ≤ 1,

−(1− σ)h(x), 1 < ‖x‖2 ≤ r.

Despite f , k, α, and ι being Lipschitz continuous on compacts
as sufficient in the case of stabilization, the following results
shows the trigger design lacks a MIET.

Lemma 1 (MIET does not exist). The system (20) with the
trigger law defined as in (21) does not possess a MIET.

Proof: To show that the interevent times {ti+1 − ti}i∈N
are not lower bounded, we will proceed via contradiction. In
particular, let us assume that there exists τ > 0 such that
ti+1 − ti ≥ τ for all i ∈ N. If the state xi = x(ti) at event
time ti is used as an initial condition, the solution to (20) is:

x(t) = exp

(
h(xi)∆ti

2

)[
cos ∆ti sin ∆ti
− sin ∆ti cos ∆ti

]
xi,

= Mi(∆ti)xi,

for t ∈ [ti, ti+1) with ∆ti = t− ti. Denoting ωi = h(xi)∆ti,
we see that the norm of the error is lower bounded by a
function monotonically increasing in time:

‖e(t)‖2 = ‖(I−Mi(∆ti))xi‖2,

=

√(
exp (ωi)− 2 exp

(ωi
2

)
cos(∆ti) + 1

)
‖xi‖2,

≥
∣∣∣exp

(ωi
2

)
− 1
∣∣∣ ‖xi‖2.

This lower bound on the error grows unbounded in time. This
implies that no matter the state in Int(C) that an event occurs,
another event must occur at some time in the future (or the
bound in (21) will be violated as h is upper bounded on C).
Thus, for all T > 0, there exists an event time ti > T .

Next, we show that limt→∞ h(x(t)) = 0. Note that:

h(x(t)) = 1− ‖x(t)‖22 = 1− exp (h(xi)∆ti)‖xi‖22,

with time derivative:

ḣ(x(t)) = −h(xi) exp (h(xi)∆ti)‖xi‖22,

for t ∈ [ti, ti+ 1). Within the safe set we have that ḣ(x(t)) ≤
0, such that h(x(t)) is monotonically decreasing in time. The
safety of C implies h(x(t)) is lower bounded by 0, and thus
we can conclude that limt→∞ h(x(t)) exists. Assume that this
limit is some value 0 < c < 1. Thus for any δ > 0, there exists
T > 0 such that for t > T , h(x(t)) < c+δ. Since there are an
infinite number of events, we deduce there exists ti > T such
that h(x(ti)) < c+δ. As h(x(t)) is monotonically decreasing,
it also follows h(x(t)) ≥ c for all t. This implies:

ḣ(x(t)) ≤ −c exp (c∆ti)(1− (c+ δ)) ≤ −c+ c2 + cδ < 0.

for t ≥ ti where δ is chosen small enough to enforce the strict
inequality with 0. Thus between two events we have:

h(x(ti+1)) ≤ h(x(ti)) + τ(−c+ c2 + cδ),

where τ is the assumed MIET. Choosing δ < τ(c−c2)/(1+τc)
implies h(x(ti+1)) < c, contradicting the assumption that c 6=
0 (and maintaining the assumption on the existence of τ ).

To complete the proof, note e(ti) = 0 and take the second-
order (one-sided) Taylor expansion of ‖e(t)‖22 at t = ti:

‖e(t)‖22 =
(
ė(ti)

>ė(ti)
)

(t− ti)2 +O((t− ti)3)

= (1 + k(x(ti)))‖x(ti)‖22(t− ti)2 +O((t− ti)3)

≥ ‖x(ti)‖22(t− ti)2 − c3(t− ti)3,

with c3 > 0. The first term in the inequality follows from
k(x(ti)) ≥ 0 for x(ti) ∈ C. The second term follows if we
view d3

dt3 ‖e(t)‖22 as a continuous function of the state, which
remains within the compact set C. Then d3

dt3 ‖e(t)‖22 will be
bounded for all time as C is forward invariant. This bound in
conjunction with Lagrange’s Remainder Formula [1] implies
the existence of c3.

At trigger time ti, let h(x(ti)) = εi with εi > 0 arbitrarily
small due to the existence of infinite triggers and convergence
of h. This implies ‖x(ti)‖22 = 1− εi. Let n ∈ N be such that
1
c3
< nτ and define t?i = ti + 1

n

(
1−εi
c3

)
, noting t?i < ti + τ .

It follows from the Taylor expansion that:

‖e(t?i )‖22 ≥
(1− εi)3

c23

n− 1

n3
.

As εi can be chosen arbitrarily small, we choose it such that:

(1− εi)3 ≥
σ2n3

4r6(n− 1)
ε2i ,

which indicates that:

2r3‖e(t?i )‖2 ≥ σ|h(x(ti))| ≥ σ|h(x(t?))|,

as h(x(t)) is monotonically decreasing. As t?i < ti + τ , this
contradicts that τ is the MIET. Figure 1 shows the number of
events as a function of time and distance from the barrier. The
blue curves in Figure 2 correspond to the interevent times.

In the proof of Lemma 1 we see the fact that the state dy-
namics (20) are not required to converge to 0 at the boundary
of the safe set C leads to the derivative of the measurement
error, d

dt‖e(ti)‖2, being uniformly lower bounded at event
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Fig. 1. Simulation results for the system (20) using the trigger law
(21). Even as the boundary of the safe set is approached h(t) → 0,
the growth rate of the error does not diminish, leading to arbitrarily
small interevent times.



times ti, which, together with the convergence of h to 0, cf.
Figure 1, leads in turn to arbitrarily small interevent times. In
particular, the dynamics evolve tangentially to the boundary
of the safe set, leading to growing measurement error while
moving arbitrarily close to the 0-level set of h.

As the original controller may have additional objectives
beyond safety (such as stabilization), it is desirable that
the event-triggered implementation not completely eliminate
tangential motion near the boundary that may be necessary
to achieve the other objectives. To accommodate this, we will
introduce a trigger law that limits dynamic evolution tangential
to the boundary of the safe set.

V. EVENT-TRIGGERED SAFETY

In this section, we propose an alternative trigger to the
one formulated in Section IV that ensures a MIET exists. To
resolve the issues highlighted in the preceding example, we
introduce the following definition:

Definition 6 (Strong ISSf Barrier Property). An ISSf-BF h
satisfies the strong ISSf barrier property if there exists d ∈ R
with d > 0 such that for all x, e ∈ Rn:

∂h

∂x
(x)f(x,k(x + e)) ≥ −α(h(x)) + d− ι(‖e‖2), (22)

This property introduces a positive constant, d, into the
ISSf-BF condition (14). In the presence of zero measurement
error, this enforces that the state dynamics must lie in the
interior of the tangent cone [5] when on the boundary of the
safe set C. It also enforces that d

dt |σh(x(ti))| will be greater
than a positive constant as we approach the boundary, similarly
to d

dt‖e(ti)‖22. We now show this property is sufficient to
design a trigger law that ensures safety with a MIET.

Theorem 1 (Trigger Law for Safety Critical Systems). Let h
be an ISSf-BF for (6) on a set C ⊂ Rn defined as in (11a)-
(11c), with corresponding functions α ∈ K∞,e and ι ∈ K∞.
Let β ∈ K∞,e, σ ∈ (0, 1]. If the following assumptions hold:

1) h satisfies the strong ISSf barrier property for a constant
d ∈ R, d > 0,

2) ι is Lipschitz continuous with Lipschitz constant Lι,
3) there exists F ∈ R, F > 0, such that for all x, e ∈ Rn:

‖f(x,k(x + e))‖2 ≤ F,

4) β(r) ≥ α(r) for all r ∈ R,
then the trigger law:

ti+1 = min
{
t ≥ ti | ι(‖e(t)‖2) = β(h(x(t))) (23)

− α(h(x(t))) + σd
}
,

deployed recursively enforces:

ḣ(x, e) =
∂h

∂x
(x)f(x,k(x + e)) ≥ −β(h(x)), (24)

thus rendering the set C safe and asymptotically stable. Fur-
thermore, there exists a MIET given by:

ti+1 − ti ≥ τ ,
σd

LιF
, i ∈ N.

Before proving the result, we make a few observations
regarding its assumptions. Assumption 3 on the boundedness

of the dynamics need not hold over the entire state space for
safety, but can hold for (x, e) ∈ C ×Rn. Furthermore, if C is
compact, the trigger law enforces the existence of a compact
set E ⊂ Rn such that e ∈ E. Thus, the continuity of f and k
implies the assumption is satisfied on C×E, which also would
be sufficient for the result to hold. Assumption 4 ensures the
right-hand side of the equality in the trigger will always be
positive. β can be viewed as a tuning function which can raise
interevent times (but not the MIET) at the expense of less
“braking" within the safe set and convergence outside of the
safe set. One choice is β = α, in which case interevent times
are lowered for more braking and faster convergence. We note
this trigger law can be used in conjunction with (10) to jointly
achieve event-triggered stabilization and safety.

Proof: To see the set C is rendered safe, observe that:

ḣ =
∂h

∂x
(x)f(x,k(x + e)) ≥ −α(h(x)) + d− ι(‖e‖2)

≥ −α(h(x)) + d− (β(h(x))− α(h(x)) + σd),

= −β(h(x)) + (1− σ)d ≥ −β(h(x)),

implying the barrier condition (12) is satisfied and C is safe.
To see the interevent time is lower bounded, observe that

‖e(t)‖2 =
∥∥∥e(0) +

∫ t

ti

(−f(x(τ), e(τ)))dτ
∥∥∥
2

=
∥∥∥ ∫ t

ti

(−f(x(τ), e(τ)))dτ
∥∥∥
2
≤
∫ t

ti

Fdτ.

This inequality together with the trigger law (23) yields:

ti+1 ≥min {t ≥ ti | Lι‖e(t)‖2 = σd} ,

≥min {t ≥ ti | LιF (t− ti) = σd} =
σd

LιF
+ ti,

ensuring the desired result. This in conjunction with the barrier
function condition implies C is asymptotically stable.

In the case that an ISSf-BF h does not satisfy the strong
barrier property, an auxiliary ISSf-BF, hb, satisfying the strong
ISSf barrier property can be synthesized via h at the expense
of guaranteeing only a larger set is kept safe:

Theorem 2 (Strong ISSf Barrier Property in Supersets). Let
h be an ISSf-BF for (6) on a set C ⊂ Rn defined as in (11a)-
(11c), with corresponding functions α ∈ K∞,e and ι ∈ K∞.
Then the function hb defined as hb(x) = h(x)+b, with b ∈ R,
b > 0, is an ISSf-BF satisfying the strong ISSf barrier property
on the set Cb defined as:

Cb , {x ∈ Rn | hb(x) ≥ 0} (25)

Proof: Observe that:

∂hb
∂x

(x)f(x,k(x + e)) =
∂h

∂x
(x)f(x,k(x + e))

≥ −α(h(x))− ι(‖e‖2) ≥ −α(hb(x)− b) + α(−b)
− α(−b)− ι(‖e‖2) = −αb(hb(x)) + db − ι(‖e‖2),

where αb ∈ K∞,e is defined as αb(r) = α(r − b) − α(−b)
and db = −α(−b) > 0.

Thus an ISSf-BF can be used with the trigger law (23) by
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Fig. 2. Simulation results demonstrating safety achieved with an event-triggered controller. (Left) State trajectories for both triggers remain
within the safe set for the length of the simulation. (Center) The value of the ISSf-BF h remains above zero for the length of the simulation,
corresponding to the system remaining safe. (Right) The interevent times of the two trigger laws. The interevent times of the trigger law
(21) decreases towards 0 as predicted by Lemma 1 while the trigger law (23) satisfies the theoretical bound.

enlarging the safe set an arbitrarily small amount:

Corollary 1 (Superset Trigger Law). If h is an ISSf-BF for (6)
on the set C satisfying Assumptions (2-4) of Theorem 1, then
hb is an ISSf-BF for (6) on the set Cb satisfying Assumptions
(1-4) of Theorem 1 such that the corresponding trigger law
renders Cb safe and asymptotically stable with a MIET.

This is effectively an instance of Input-to-State Safety, in
which case the original safe set C defined via h becomes
an ISSf safe set. We note that the larger the set is made
(via a larger choice of b), the larger the MIET will be. This
effectively highlights a trade-off that arises in the context
of safety but not in stabilization: allowing motion near the
boundary of a safe set requires additional relaxations to
achieve the additional desirable property of the MIET.

To verify the ability of this trigger to keep the system safe
and have a MIET, we simulated the system (19) using both the
trigger law (21) and the trigger law (23). The results of these
simulations can be seen in Figure 2. We see that although both
systems are kept safe, the trigger law not using the strong ISSf
barrier property has interevent times that approach 0.

VI. CONCLUSIONS

We have presented a novel approach for achieving the safety
of a system with a resource efficient event-triggered control
law using Input-to-State Safe Barrier Functions. Similarities
and differences between achieving stability and safety in an
event-triggered context were highlighted through an example,
with a particular focus on how the behavior guaranteed with
ISSf-BFs can lead to interevent times that are not lower
bounded. This insight is used to propose a trigger law that
renders the system input-to-state safe and guarantees a MIET
for the system. Future work includes exploring adaptively
choosing b to improve interevent times, synthesis of ISSf-BFs
satisfying the strong input-to-state safe barrier property, and
validating this framework experimentally on robotic systems.
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