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Abstract—In this paper we seek to quantify the ability of
learning to improve safety guarantees endowed by Control
Barrier Functions (CBFs). In particular, we investigate how
model uncertainty in the time derivative of a CBF can be reduced
via learning, and how this leads to stronger statements on the safe
behavior of a system. To this end, we build upon the idea of Input-
to-State Safety (ISSf) to define Projection-to-State Safety (PSSf),
which characterizes degradation in safety in terms of a projected
disturbance. This enables the direct quantification of both how
learning can improve safety guarantees, and how bounds on
learning error translate to bounds on degradation in safety. We
demonstrate that a practical episodic learning approach can use
PSSf to reduce uncertainty and improve safety guarantees in
simulation and experimentally.

Index Terms—Machine learning; Lyapunov methods; Uncer-
tain systems

I. INTRODUCTION

ENSURING safety is of significant importance in the de-
sign of many modern control systems, from autonomous

driving to industrial robotics. In practice, the models used
in the control design process are imperfect, with model
uncertainty arising due to parametric error and unmodeled
dynamics. This uncertainty can cause the controller to render
the system unsafe. As such, it is necessary to quantify how
the desired safety properties degrade with uncertainty.

Control Barrier Functions (CBFs) have become increasingly
popular [15], [22], [2] as a tool for synthesizing controllers
that provide safety via set invariance [5]. Safety guarantees
endowed by a controller synthesized via CBFs rely on an
accurate model of a system’s dynamics, and may degrade
in the presence of model uncertainty. The recently proposed
definition of Input-to-State Safety (ISSf) provides a tool for
quantifying the impact on safety guarantees of such uncer-
tainty or disturbances in the dynamics [13] by describing
changes in the set kept invariant.

Due to its flexibility, it is increasingly popular to incorporate
learning into safe controller synthesis [23], [7], [16], [8]. Many
of these approaches seek to provide statistical guarantees on
the safety via assumptions made on learning performance. In
practice however, limitations on learning performance arise
due to factors such as covariate shift [6], [14], limitations on
model capacity, and optimization error. Thus, it is critical to
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understand the relationship between learning error and what
safety guarantees can be ensured.

In this paper, we study how introducing learning models
into safe controller synthesis done via CBFs can improve
safety guarantees, and what safety guarantees can be made
in the presence of learning error. In particular, we consider
the episodic learning approach proposed in [21], with learning
done directly on the time derivative of a CBF. We integrate this
approach with Input-to-State Safety to show how learning can
lead to improved safety guarantees and provide a relationship
between learning error and degradation of safety guarantees.

The methods in this paper play a distinct role in the context
of safe control in the presence of uncertainty. Unlike previous
work using learning with Control Lyapunov Functions (CLFs)
for stability [20], [19], CBFs are less conservative as they
endow safety. This allows them to augment other potentially
unsafe controller designs pursuing specific objectives and
render them safe [10]. Additionally, these learning methods are
complementary to existing methods for CBF synthesis [18],
allowing them to quantify the impact of uncertainty on the
product of these methods. Adaptive methods for safe control
are restricted to structured, parametric uncertainty [4], but can
be integrated with the results of this paper to understand how
unstructured uncertainty impacts the safety of the system.

We make two main contributions in this paper. First, in-
spired by the idea of Projection-to-State Stability proposed
in [19], we formulate general definitions of projections and
projection compatible functions. Care must be taken to ensure
these definitions preserve important topological properties for
safety such as safe set membership. These definitions not
only capture the definitions established in [19] as a special
case, but allow us to define the notion of Projection-to-State
Safety (PSSf), which is a variant of the Input-to-State Safety
property. Like ISSf, PSSf provides a tool for characterizing the
degradation of safety in the presence of disturbances. Unlike
ISSf, PSSf considers disturbances in a projected environment,
allowing stronger guarantees on safe behavior. Second, we
demonstrate the utility of PSSf by characterizing how data-
driven learning models can improve safety guarantees, and
how learning error leads to degradation in safety guarantees.

II. PRELIMINARIES

This section provides a review of Control Barrier Functions
(CBFs) and Input-to-State Safe Control Barrier Functions
(ISSf-CBFs). These tools will be used in Section III to define
the notion of Projection-to-State Safety.



Consider the nonlinear control affine system given by:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn, u ∈ Rm, and f : Rn → Rn and g :
Rn → Rn×m are locally Lipschitz continuous on Rn. Given a
Lipschitz continuous state-feedback controller k : Rn → Rm,
the closed-loop system dynamics are:

ẋ = fcl(x) , f(x) + g(x)k(x). (2)

The assumption on local Lipschitz continuity of f , g, and k
implies that fcl is locally Lipschitz continuous. Thus for any
initial condition x0 := x(0) ∈ Rn there exists a time interval
I(x0) = [0, tmax) such that x(t) is the unique solution to (2) on
I(x0) [17]. In the case that fcl is forward complete, tmax =∞.

A continuous function α : [0, a)→ R+, with a > 0, is said
to belong to class K (α ∈ K) if α(0) = 0 and α is strictly
monotonically increasing. If a = ∞ and limr→∞ α(r) = ∞,
then α is said to belong to class K∞ (α ∈ K∞). A continuous
function α : (−b, a) → R, with a, b > 0, is said to belong to
extended class K (α ∈ Ke) if α(0) = 0 and α is strictly
monotonically increasing. If a, b = ∞, limr→∞ α(r) = ∞,
and limr→−∞ α(r) = −∞, then α is said to belong to
extended class K∞ (α ∈ K∞,e)

The notion of safety that we consider is formalized by
specifying a safe set in the state space that the system must
remain in to be considered safe. In particular, consider a set
C ⊂ Rn defined as the 0-superlevel set of a continuously
differentiable function h : Rn → R, yielding:

C , {x ∈ Rn : h(x) ≥ 0} , (3)

∂C , {x ∈ Rn : h(x) = 0}, (4)

Int(C) , {x ∈ Rn : h(x) > 0}. (5)

We assume that C is nonempty and has no isolated points,
that is, Int(C) 6= ∅ and Int(C) = C. We refer to C as the safe
set. This construction motivates the following definitions of
forward invariant and safety:

Definition 1 (Forward Invariant & Safety). A set C ⊂ Rn is
forward invariant if for every x0 ∈ C, the solution x(t) to (2)
satisfies x(t) ∈ C for all t ∈ I(x0). The system (2) is safe on
the set C if the set C is forward invariant.

Certifying the safety of the closed-loop system (2) with
respect to a set C may be impossible if the controller k
was not chosen to enforce the safety of C. Control Barrier
Functions can serve as a synthesis tool for attaining the
forward invariance, and thus the safety of a set:

Definition 2 (Control Barrier Function (CBF), [3]). Let C ⊂
Rn be the 0-superlevel set of a continuously differentiable
function h : Rn → R with 0 a regular value. The function
h is a Control Barrier Function (CBF) for (1) on C if there
exists α ∈ K∞,e such that for all x ∈ Rn:

sup
u∈Rm

ḣ(x,u) ,
∂h

∂x
(x) (f(x) + g(x)u) > −α(h(x)). (6)

We note that this definition can be relaxed such that the
inequality only holds for all x ∈ E where E is an open

set satisfying C ⊂ E ⊂ Rn. Given a CBF h for (1) and a
corresponding α ∈ K∞,e, we can consider the point-wise set
of all control values that satisfy (6):

Kcbf(x) ,
{

u ∈ Rm
∣∣∣ ḣ(x,u) ≥ −α(h(x))} .

One of the main results in [1], [24] relates controllers taking
values in Kcbf(x) to the safety of (1) on C:

Theorem 1. Given a set C ⊂ Rn defined as the 0-superlevel
set of a continuously differentiable function h : Rn → R,
if h is a CBF for (1) on C, then any Lipschitz continuous
controller k : Rn → Rm, such that k(x) ∈ Kcbf(x) for all
x ∈ Rn, renders the system (1) safe with respect to the set C.

Assuming ∂h
∂x and α are Lipschitz continuous, the follow-

ing optimization-based controller is Lipschitz continuous and
enforces k(x) ∈ Kcbf(x) for all x ∈ Rn [1], [11]:

k(x) = argmin
u∈Rm

1

2
‖u‖22 (CBF-QP)

s.t.
∂h

∂x
(x) (f(x) + g(x)u) ≥ −α(h(x))

To accommodate disturbances or model uncertainties, we
consider a disturbance space D ∈ Rn and a disturbed system:

ẋ = f(x) + g(x)u + d. (7)

with d ∈ D. The disturbance may be time-varying, state
and/or input dependent. Viewing d as a signal, d(t), we
assume it is essentially bounded in time, and define ‖d‖∞ ,
ess supt≥0 ‖d(t)‖. A Lipschitz continuous state-feedback con-
troller k yields the closed-loop dynamics:

ẋ = fcl(x,d) , f(x) + g(x)k(x) + d. (8)

In the presence of disturbances, a controller k synthesized to
render the set C safe for the undisturbed dynamics (2) may fail
to render C safe for the disturbed dynamics (8). To quantify
how safety degrades, we consider input-to-state safety [13]:

Definition 3 (Input-to-State Safety (ISSf)). The closed-loop
system (8) is input-to-state safe (ISSf) on a set C ⊂ Rn with
respect to disturbances d if there exists d > 0 and γ ∈ K∞
such that the set Cd ⊃ C defined as:

Cd , {x ∈ Rn : h(x) + γ(‖d‖∞) ≥ 0} , (9)

∂Cd , {x ∈ Rn : h(x) + γ(‖d‖∞) = 0}, (10)

Int(Cd) , {x ∈ Rn : h(x) + γ(‖d‖∞) > 0}, (11)

is forward invariant for all d satisfying ‖d‖∞ ≤ d.

We refer to C as an input-to-state safe set (ISSf set) if such
a set Cd exists. This definition implies that though the set C
may not be safe, a larger set Cd, depending on d, is safe. C
can be certified as an ISSf set for the closed-loop system (8)
with the following definition:

Definition 4 (Input-to-State Safe Barrier Function (ISSf-BF)).
Let C ⊂ Rn be the 0-superlevel set of a continuously
differentiable function h : Rn → R with 0 a regular value.
The function h : Rn → R is an Input-to-State Safe Barrier
Function (ISSf-BF) for (8) on C if there exists d > 0,



α ∈ K∞,e, and ι ∈ K∞ such that:

∂h

∂x
(x)(f(x) + g(x)k(x) + d) ≥ −α(h(x))− ι(‖d‖), (12)

for all x ∈ Rn and d ∈ Rn such that ‖d‖ ≤ d.

As shown in [13], the existence of an ISSf-BF for (8) on
C implies C is an ISSf set. Similarly to the undisturbed case,
we can introduce the notion of a Control Barrier Function for
synthesizing controllers that ensure input-to-state safety:

Definition 5 (ISSf Control Barrier Function (ISSf-CBF)). Let
C ⊂ Rn be the 0-superlevel set of a continuously differentiable
function h : Rn → R with 0 a regular value. The function h
is an Input-to-State Safe Control Barrier Function (ISSf-CBF)
for (7) on C if there exists d > 0, α ∈ K∞,e, and ι ∈ K∞
such that:

sup
u∈Rm

ḣ(x,u,d) ,
∂h

∂x
(x)(f(x) + g(x)u + d)

> −α(h(x))− ι(‖d‖), (13)

for all x ∈ Rn and d ∈ Rn satisfying ‖d‖ ≤ d.

We note that this definition is a more general definition of
an ISSf-CBF compared to [13], where disturbances enter the
system with the inputs. We define the pointwise set:

Kissf(x) ,
{

u ∈ Rm
∣∣∣ ḣ(x,u,d) ≥ −α(h(x))− ι(‖d‖)} ,

noting that for a fixed input the inequality must hold for all
d ∈ Rn satisfying ‖d‖ ≤ d. Given this result, we have the
following theorem:

Theorem 2. Given a set C ⊂ Rn defined as the 0-superlevel
set of a continuously differentiable function h : Rn → R, if
h is an ISSf-CBF for (7) on C, then any Lipschitz continuous
controller k : Rn → Rm, such that k(x) ∈ Kissf(x) for all
x ∈ Rn, renders the set C ISSf for (8).

This theorem follows from the fact that under the controller
k, h serves an ISSf-BF for (8) on C.

III. PROJECTION-TO-STATE SAFETY

Input-to-State Safety describes how the safe set C changes
in terms of the disturbance as it appears in the state dynamics
(see Definition 3 in Section II). This description does not
permit analysis of how safety degrades when the disturbance is
more easily characterized in a Barrier Function derivative. This
limitation motivates Projection-to-State Safety (PSSf), which
characterizes safety in terms of a projected disturbance.

We refer to a continuously differentiable function Π : Rn →
Rk as a projection, and denote y = Π(x). Considering the
system governed by (7), the associated projected system is
governed by the dynamics:

ẏ = DΠ(x) (f(x) + g(x)u) + DΠ(x)d, (14)

where DΠ : Rn → Rk×n denotes the Jacobian of Π. As will
be seen when quantifying the impact of model uncertainty in
Section IV, if the disturbance can be partially characterized

in terms of the state and input, we may rewrite the projected
dynamics as:

ẏ = fy(x) + gy(x)u + δ, (15)

where fy : Rn → Rk and gy : Rn → Rk×m are Lipschitz
continuous on Rn, and δ ∈ Rk is referred to as the projected
disturbance. We note it is not explicitly necessary that the
relationships fy(x) = DΠ(x)f(x), gy(x) = DΠ(x)g(x),
and δ = DΠ(x)d hold, but are one possible relationship
between (14) and (15). For the following results, we assume
that δ is essentially bounded in time and define ‖δ‖∞ ,
ess supt≥0 ‖δ(t)‖. We relate behavior of the projected system
to the original system via the following definition:

Definition 6 (Projection-to-State Safety). The closed-loop
system (8) is projection-to-state safe (PSSf) on C with respect
to the projection Π and projected disturbances δ if there exists
δ > 0 and γ ∈ K∞ such that the set Cδ ⊃ C,

Cδ , {x ∈ Rn : h(x) + γ(‖δ‖∞) ≥ 0} , (16)

∂Cδ , {x ∈ Rn : h(x) + γ(‖δ‖∞) = 0}, (17)

Int(Cδ) , {x ∈ Rn : h(x) + γ(‖δ‖∞) > 0}, (18)

is forward invariant for all δ satisfying ‖δ‖∞ ≤ δ.

In contrast to the definition of ISSf which enlarges the safe
set in terms of the disturbance d, PSSf quantifies how the safe
set enlarges in terms of the projected disturbance δ. To utilize
safety guarantees implied by ISSf-CBFs for analyzing PSSf
behavior, we require the following definition:

Definition 7 (Compatible Projection). A function hΠ : Rk →
R is said to be a compatible projection for the function h :
Rn → R with respect to the projection Π : Rn → Rk if there
exists σ, σ ∈ K∞,e such that for all x ∈ Rn:

σ(h(x)) ≤ hΠ(Π(x)) ≤ σ(h(x)). (19)

Remark 1. If h and hΠ are norms on Rn and Rk, respectively,
then Π reduces to a dynamic projection as introduced in [19].
Whereas dynamic projections preserve the topological notion
of a point between the state and projected spaces, compatible
projections can preserve topological structures such as sets.

In the context of safety, if a set C ⊂ Rn is defined
via a continuously differentiable function h as in (3)-(5), a
compatible projection hΠ for the function h with respect to
Π defines a corresponding set CΠ ⊂ Rk:

CΠ ,
{
y ∈ Rk : hΠ(y) ≥ 0

}
, (20)

∂CΠ , {y ∈ Rk : hΠ(y) = 0}, (21)

Int(CΠ) , {y ∈ Rk : hΠ(y) > 0}. (22)

The inequalities in (19) preserve the notion of what states are
considered safe between the state space and projected space,
such that x ∈ C =⇒ Π(x) ∈ CΠ. The following theorem
allows us to extend ISSf properties of the projected system on
CΠ to PSSf properties of the original system on C.

Theorem 3. Let C ⊂ Rn be the 0-superlevel set of a
continuously differentiable function h : Rn → R with 0
a regular value. The disturbed system (7) can be rendered



PSSf on C with respect to the projection Π and projected
disturbances δ if there exists a compatible projection hΠ

for h with respect to Π and Lipschitz continuous controller
k : Rn → Rm such that hΠ is an ISSf-CBF for the projected
dynamics (15) on CΠ and k(x) ∈ Kissf(x) with:

Kissf(x) ,

{
u ∈ Rm

∣∣∣∣ ḣΠ(Π(x),u) ≥
−α(hΠ(Π(x)))− ι(‖δ‖)

}
,

Proof. As hΠ is an ISSf-CBF for (15) on CΠ and the state-
feedback controller satisfies k(x) ∈ Kissf(x), Theorem 2
implies that the controller k renders the set CΠ input-to-state
safe for all δ satisfying ‖δ‖∞ ≤ δ. In particular, there exists
γ ∈ K∞ such that the set:

CΠ,δ ,
{
y ∈ Rk | hΠ(y) + γ(‖δ‖∞) ≥ 0

}
, (23)

is safe. Let x0 ∈ Rn be such that y0 = Π(x0) ∈ CΠ,δ . With
x(0) = x0 (implying y(0) = y0), safety of CΠ,δ implies:

hΠ(Π(x(t))) + γ(‖δ‖∞) ≥ 0, (24)

for t ∈ I(x0). As hΠ is a compatible projection for h with
respect to Π, we have:

σ(h(x(t))) + γ(‖δ‖∞) ≥ 0, (25)

Multiplying by 1
2 and using that σ ∈ K∞,e, it follows that:

σ−1
(
1

2
σ(h(x(t))) +

1

2
γ(‖δ‖∞)

)
≥ 0, (26)

The triangle inequality for class K functions [12] implies:

h(x(t)) + σ−1(γ(‖δ‖∞))︸ ︷︷ ︸
γ′(‖δ‖∞)

≥ 0, (27)

for all t ∈ I(x0), implying the set Cδ defined as in (16)-
(18) using γ′ is forward invariant, and hence safe. Thus the
closed-loop system (7) is PSSf on C with respect to Π and
corresponding projected disturbances δ.

Corollary 1. Let C ⊂ Rn be the 0-superlevel set of a
continuously differentiable function h : Rn → R with 0 a
regular value. Viewing h as a projection such that y = h(x),
let the projected dynamics be given by:

ẏ = fy(x) + gy(x)u + δ (28)

with projected disturbances δ ∈ R. If there exists a Lipschitz
continuous feedback controller k : Rn → Rm such that:

fy(x) + gy(x)k(x) ≥ −α(y), (29)

and there exists δ > 0 satisfying |δ| < δ, then the disturbed
system (7) can be rendered PSSf on C with respect to the
projection h and projected disturbances δ.

Proof. We first note that the identity map I : R → R is a
compatible projection for h:

h(x) ≤ I(h(x)) ≤ h(x) (30)

with σ(r) = σ(r) = r. The inequality in (29) implies the
identity map is an ISSf-CBF for the projected dynamics (28):

sup
u∈Rm

İ(x,u, δ) ≥ İ(x,k(x), δ) ≥ −α(I(y))− |δ|, (31)

for all x ∈ Rn and δ ∈ R satisfying |δ| ≤ δ. Therefore the
system (7) can be rendered PSSf on C with respect to the
projection h and projected disturbances δ by Theorem 3.

IV. INTEGRATION WITH LEARNING

In this section we consider a structured form of uncertainty
in affine control systems. We discuss the impact of this uncer-
tainty on the PSSf behavior of the system, and demonstrate
how learning can be used to mitigate said impact on safety.

In practice, the system dynamics (1) are not known during
control design due to parametric error and unmodeled dynam-
ics. Instead, a nominal model of the system is utilized:̂̇x = f̂(x) + ĝ(x)u, (32)

where f̂ : Rn → Rn and ĝ : Rn → Rn×m are assumed to be
Lipschitz continuous on Rn. By adding and subtracting (32)
to (1), the dynamics of the system can be expressed as:

ẋ = f̂(x) + ĝ(x)u +

d︷ ︸︸ ︷
f(x)− f̂(x)︸ ︷︷ ︸

b(x)

+(g(x)− ĝ(x))︸ ︷︷ ︸
A(x)

u, (33)

where the unknown disturbance d = b(x)+A(x)u explicitly
depends on the state and input to the system. If the function
h : Rn → R is a CBF for the nominal model (32) on C, the
uncertainty directly manifests in the time derivative of h:

ḣ(x,u) =

̂̇
h(x,u)︷ ︸︸ ︷

∂h

∂x
(x)(f̂(x) + ĝ(x)u)

+
∂h

∂x
(x)b(x)︸ ︷︷ ︸
b(x)

+
∂h

∂x
(x)A(x)︸ ︷︷ ︸
a(x)>

u. (34)

Given that h is a CBF for (32) on C, let k : Rn → Rm be a
Lipschitz continuous state-feedback controller such that:

sup
u∈Rm

̂̇
h(x,u) ≥ ̂̇h(x,k(x)) ≥ −α(h(x)). (35)

Letting the projected disturbance be defined as:

δ = b(x) + a(x)>k(x), (36)

Corollary 1 implies that if there exists a δ > 0 such that
|b(x) + a(x)>k(x)| ≤ δ for all x ∈ Rn, the uncertain system
(1) can be rendered PSSf on C with respect to the projection
h and projected disturbances δ.

As in [21], we may wish to reduce the error between ḣ and̂̇
h by utilizing data-driven models to estimate the functions
b and a. In particular, given Lipschitz continuous estimators
b̂ : Rn → R and â : Rn → Rm, (34) can be reformulated as:

ḣ(x,u) =

̂̇
h(x,u)︷ ︸︸ ︷

∂h

∂x
(x)(f̂(x) + ĝ(x)u) + b̂(x) + â(x)>u

+
∂h

∂x
(x)b(x)− b̂(x)︸ ︷︷ ︸

b̃(x)

+

(
∂h

∂x
(x)A(x)− â(x)>

)
︸ ︷︷ ︸

ã(x)>

u.

(37)
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Fig. 1. Simulation results with Segway platform demonstrating improvement in PSSf behavior. (Left) Robotic Segway platform model
used in simulation. (Center) Absolute value of the projected disturbance δ along the trajectory without learning models ((36),red) and with
learning models ((38), blue), with learning reducing the worse case projected disturbance (δ/α). (Right) The value of the barrier satisfies
the corresponding worst case lower bound with and without learning being used to compute δ. The worst case lower bound is raised with
learning (the blue dashed line lies above the red dashed line).

Under the assumption that the introduction of the estimators
does not violate the CBF condition, such that there exists a
Lipschitz state-feedback controller k satisfying (35) with ̂̇h
defined as in (37), we define the projected disturbance as:

δ = b̃(x) + ã(x)>k(x) (38)

As before, if there exists δ > 0 such that |b̃(x)+ã(x)>k(x)| ≤
δ for all x ∈ Rn, Corollary 1 can be used to certify (1)
as PSSf on C with respect to the projection h and projected
disturbances δ. This statement is formalized as follows:

Theorem 4. Let C ⊂ Rn be the 0-superlevel set of a
continuously differentiable function h : Rn → R with 0 a
regular value, and let ĥ : Rn → R be defined as in (34) (or
as in (37)). If there exists a Lipschitz continuous state-feedback
controller k : Rn → Rm satisfying (35), and δ > 0 such that
the corresponding projected disturbance defined as in (36) (or
as in (38)) satisfies |δ| ≤ δ, then (7) is PSSf on C with respect
to the projection h and projected disturbances δ.

We note that this theorem captures both the case without
estimators (using definitions (34) and (36)) and the case with
estimators (using definitions (37) and (38)). In the presence
of estimators, this theorem defines a quantitative relationship
between the prediction error of the estimators, |ḣ(x,k(x))−̂̇
h(x,k(x))| = |δ|, and the degradation of the safety of the
closed-loop system. As the prediction error is reduced (via
additional training data or more complex learning models),
the set kept safe more closely resembles C.

V. SIMULATION & EXPERIMENTAL VALIDATION

To demonstrate the ability of learning to improve safety
guarantees via Projection-to-State Safety, we deployed the
episodic learning framework with CBFs established in [21]
on a robotic Segway platform, seen in Figure 1 and 2, in
simulation and experimentally. The input to the system is
specified as torque about the wheels of the Segway. Each
wheel is given the same torque, constraining the system to the
plane, and making the states of interest the position, velocity,

pitch angle, and pitch angle rate. The dynamics for the system
are given by the unconstrained Euler-Lagrange equations. 1

In both simulation and experiment a sequence of episodes
were ran to train estimators b̂ and â, represented by 4-layer
neural networks with ReLu nonlinearities. In each episode
the Segway was set to track a desired trajectory in the
pitch angle space without violating a barrier function on a
portion of its state, using the controller (CBF-QP) and safety-
critical control formulation in [10]. After the sequence of
episodes, the Segway was ran once more with a learning-
informed controller, and the projected disturbance δ as defined
in (36) and (38) was computed. The worst case disturbance
δ was found, and a lower bound on h for that trajectory was
determined using the fact h ≤ α−1(δ) =⇒ ḣ ≥ 0. In both
simulation and experiment, α(r) = kr with k > 0.

In simulation, the Segway was given a bound on its position
in space, constraining it to a one meter distance from its
starting location. The CBF was generated through the backup
controller method [9]. The value of the CBF is computed
at each time-step by integrating the system forward in time
under a backup control law. Sensitivity analysis along the
trajectory is used to compute the gradient of the CBF. This
simulation result highlights the ability of learning to reduce
worst case disturbances for complex CBFs that cannot be
expressed in closed-form. The simulation was done in a Robot
Operating System (ROS) based C++ environment similar to
[18]. The simulation environment accurately simulates the
physical system by adding input delay, sensor noise, and state
estimation. The code is identical to that on the robot for
the state estimator, controller, and CBF, apart from the ROS
functionality. Experimentally, a CBF was specified to limit the
pitch angle and pitch angle rate of the Segway to an ellipse
about the Segway’s equilibrium state. The desired pitch angle
trajectory leads the Segway to tip quickly, leaving the safety
set in the absence of the CBF and safety-critical controller.

In both cases, we see that introducing learning estimators
into the computation of the projected disturbance decreases

1The simulation code (including an expression for the full system dynamics)
can be found at https://github.com/DrewSingletary/cyberpod_sim_ros
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Fig. 2. Experimental results with Segway platform demonstrating improvement in PSSf behavior. (Left) Physical robotic Segway platform
used in experimentation. (Center) Absolute value of the projected disturbance δ along the trajectory without learning models ((36),red)
and with learning models ((38), blue), with learning reducing the worse case projected disturbance (δ/α). (Right) The value of the barrier
satisfies the corresponding worst case lower bound with and without learning being used to compute δ. The worst case lower bound is raised
with learning (the blue dashed line lies above the red dashed line).

the worse case disturbance (δ > δl). This leads to a greater
lower bound on h, and thus a stronger guarantee on the PSSf
behavior of the system. We note that the conservative nature of
the lower bounds on h arise from the fact that the worst case
disturbance δ along the trajectory is used. If the worst case
disturbance can be reduced (by data-aware control synthesis),
stronger guarantees on safety can be made.

VI. CONCLUSIONS

We presented a novel method for assessing the impact of
disturbances on safety in a project environment via Projection-
to-State Safety, and considered how it can be utilized with
learning to mitigate the impact of model uncertainty on
safety. We demonstrate the ability of learning to improve the
guarantees endowed by PSSf in simulation and experimentally
on a Segway platform. Future work includes developing meth-
ods for quantifying the worst case projected disturbance and
synthesizing controllers that reduce the projected disturbance.
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