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Abstract

We present a novel episodic learning framework centered
around Control Barrier Functions (CBFs) for uncertain affine
dynamic systems. With this framework we can:
1 Capture a wide class of dynamic uncertainty in the form
of parametric error and unmodeled dynamics.

2 Directly integrate learned models into an established
nonlinear control framework and demonstrate improved
performance.

3 Utilize experimental data to restrict residual uncertainty
and quantify worst-case impact on stability.

Background

ẋ = f(x) + g(x)u

Nonlinear Affine Dynamics

x ∈ Rn f : Rn → Rn

g : Rn → Rn×mu ∈ Rm

Control Barrier Function (CBF)

sup ḣ(x,u) ≥ −α(h(x))
u ∈ U

Certification of safety

Optimal nonlinear control

C , {x ∈ Rn : h(x) ≥ 0}
Safe Set

∂C , {x ∈ Rn : h(x) = 0}
Int(C) , {x ∈ Rn : h(x) > 0}

Learning the Model to Reality Gap

ẋ = f̂(x) + ĝ(x)u

ẋ = f̂(x) + ĝ(x)u + (g(x)− ĝ(x)︸ ︷︷ ︸
A(x)

)u + f(x)− f̂(x)︸ ︷︷ ︸
b(x)

Parametric Error

Model Estimate

Uncertain Model

Physics Modeling

Unmodeled Dynamics

ḣ(x,u) =

ˆ̇h(x,u)︷ ︸︸ ︷
(f̂(x) + ĝ(x)u)>∇h(x)

CBF Derivative

Uncertain V̇

+(A(x)>∇h(x)︸ ︷︷ ︸
a(x)

)>u + b(x)>∇h(x)︸ ︷︷ ︸
b(x)

Use experimental data and supervised
learning to estimate b and a

ḣ(x,u)− ˆ̇h(x,u) ≈ â(x)>u + b̂(x)

Estimate ḣ Error

Safety-Critical Control Law

k(x) = argmin ‖u− kd(x)‖22
s.t. Lf̂h(x) + Lĝh(x)u ≥ −α(h(x))

s.t. Lf̂h(x) + b̂(x) + (Lĝh(x) + â(x)>)u ≥ −α(h(x))

k(x) = argmin ‖u− kd(x)‖22

u ∈ U

u ∈ U

Learned models b̂, â

Model Based QP

Augmented QP

Episodic Learning Algorithm

Initial controllers may not be capable of exploring regions of
interest in the state space needed to ensure generalization of
the learned models. An iterative approach that slowly aug-
ments the initial controller with learned information enables
progressive improvement and exploration of the state space.

Algorithm 1 Dataset Aggregation for Control Barrier Func-
tions (DaCBarF)
Require: Barrier function h, Barrier function derivative es-
timate ˆ̇h0, model classes Ha and Hb, loss function L, set
of initial conditions X0, nominal state-feedback controller
k0, number of experiments T , sequence of trust coefficients
0 ≤ w1 ≤ · · · ≤ wT ≤ 1

D = ∅ . Initialize dataset
for k = 1, . . . , T do

x0← sample(X0) . Sample initial condition
Dk ← experiment(x0,kk−1) . Execute experiment
D ← D ∪Dk . Aggregate dataset
â, b̂← ERM(Ha,Hb,L, D, ˆ̇h0) . Fit estimators
ˆ̇hk ← ˆ̇h0 + â>u + b̂ . Update ˆ̇h
kk ← (1− wk) · k0 + wk · aug(k0,

ˆ̇hk) . Augment u0
end for
return D, ˆ̇hT ,kT

Projection-to-State Safety

b̂, â

ḣ(x,u) =

ˆ̇h(x,u)︷ ︸︸ ︷
(f̂(x) + ĝ(x)u)>∇h(x) + â(x)>u + b̂(x)

Approximation Error

Uncertainty Estimators

True ḣ

Optimization Error

ḣ(x,u) ≥ −α(h(x))− |δ|

Projection-to-State

Error Bounds

+(A(x)>∇h(x)− â(x)︸ ︷︷ ︸
a(x)

)>u + b(x)>∇h(x)− b̂(x)︸ ︷︷ ︸
b(x)

Estimation Error

Stability (PSS)

δ = a(x)>u + b(x)

Forward Invariance

Cδ , {x ∈ Rn : h(x) + γ(|δ|) ≥ 0}
∂Cδ , {x ∈ Rn : h(x) + γ(|δ|) = 0}

Int(Cδ) , {x ∈ Rn : h(x) + γ(|δ|) > 0}

Results

Figure 1: The episodic learning algorithm DaCBarF was deployed on the physical Segway system. The learning augmented controller (top) was able to render the
Segway system safe, where as the model-based controller (bottom) failed to keep the system safe. Estimators b̂(x) and â(x) were each represented with 4-layer
neural networks trained using an absolute error loss function.
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Figure 2: Simulation results with Segway platform demonstrating improvement in PSSf behavior. (Left) Robotic Segway platform model used in simulation.
(Center) Absolute value of the projected disturbance δ along the trajectory without learning models (red) and with learning models (blue), with learning reducing
the worse case projected disturbance (δ/α). (Right) The value of the barrier satisfies the corresponding worst case lower bound with and without learning being
used to compute δ. The worst case lower bound is raised with learning (the blue dashed line lies above the red dashed line).
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Figure 3: Experimental results with Segway platform demonstrating improvement in PSSf behavior. (Left) Physical robotic Segway platform used in experimen-
tation. (Center) Absolute value of the projected disturbance δ along the trajectory without learning models (red) and with learning models (blue), with learning
reducing the worse case projected disturbance (δ/α). (Right) The value of the barrier satisfies the corresponding worst case lower bound with and without
learning being used to compute δ. The worst case lower bound is raised with learning (the blue dashed line lies above the red dashed line).

Future Work

• Integrate this framework with Control Lyapunov Function
(CLF) based learning for stabilization.
•Explore data-driven robust control methods for mitigating
residual uncertainty after learning.
•Evaluate limitations and tradeoffs of machine learning model
complexity on resource constrained hardware platforms.
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