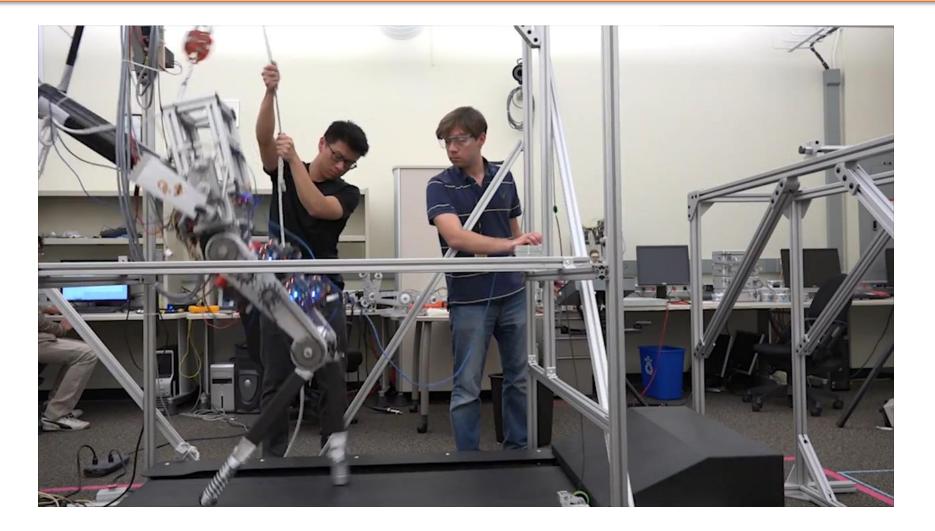
Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

Andrew Taylor Victor Dorobantu Hoang Le Yisong Yue Aaron D. Ames

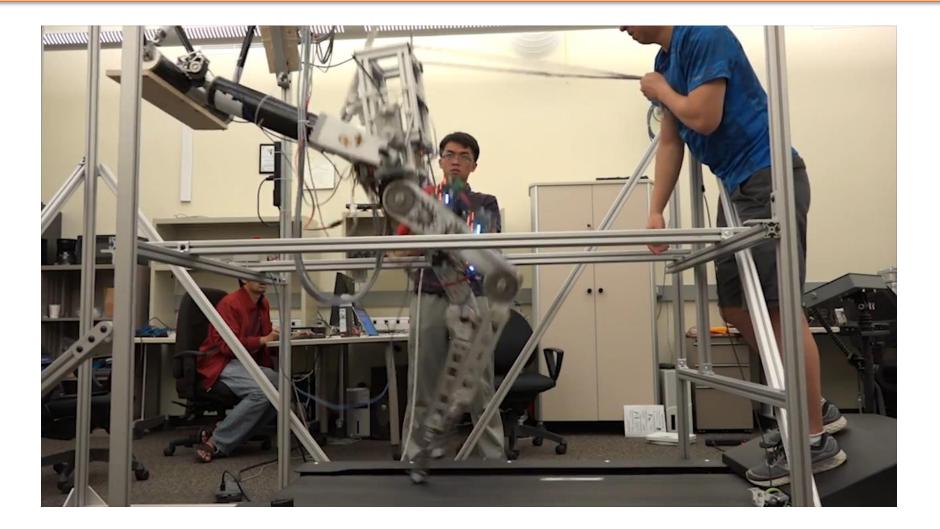
> Computing and Mathematical Sciences California Institute of Technology

> > November 7th, 2019

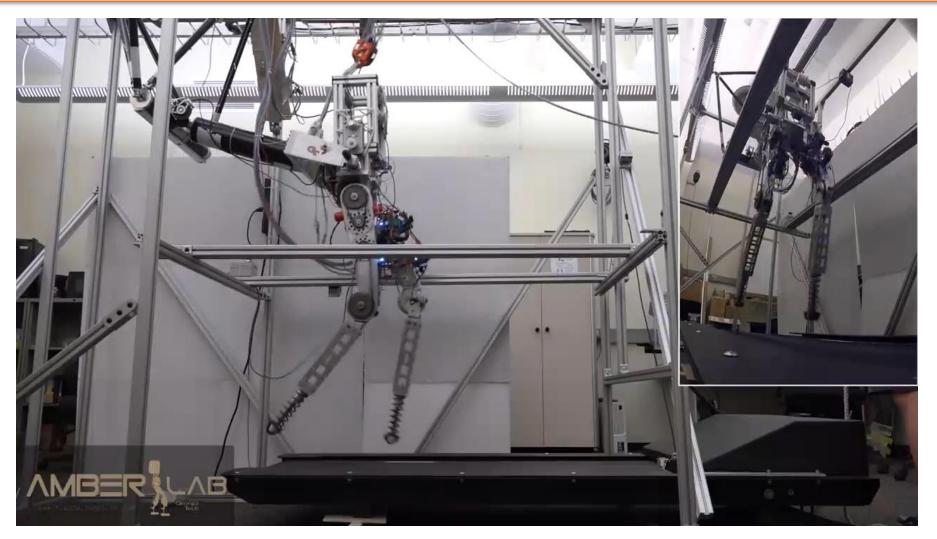
Control in the real world is hard



Control in the real world is hard

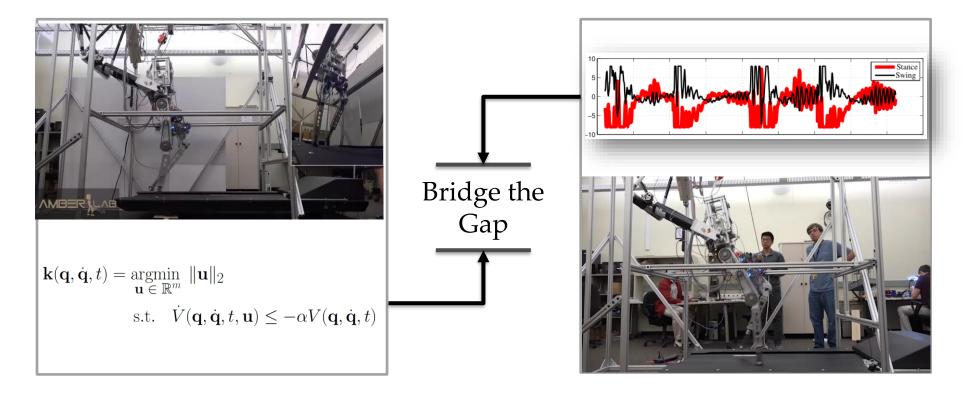


But: Pretty when it works...



W. Ma, et al., Bipedal robotic running with durus-2d: Bridging the gap between theory and experiment

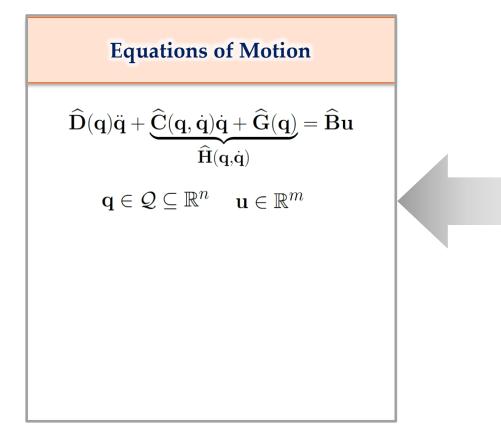
Claim: Need to Bridge the Gap

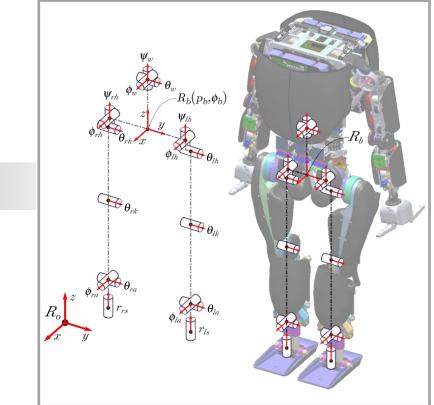


Theorems & Proofs

Experimental Realization

Robotic Dynamics

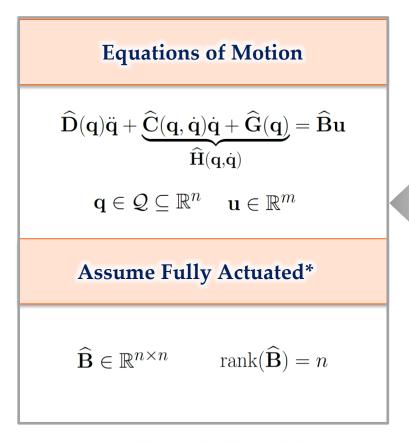




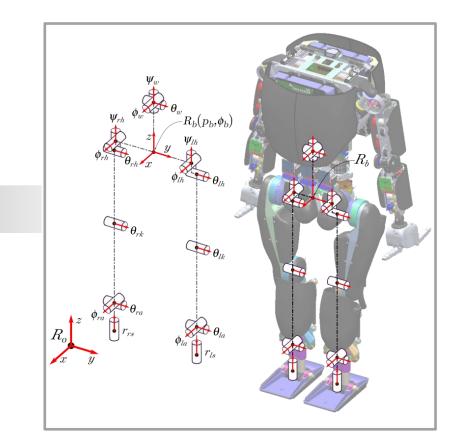
Mathematical Model

Robot Model

Robotic Dynamics



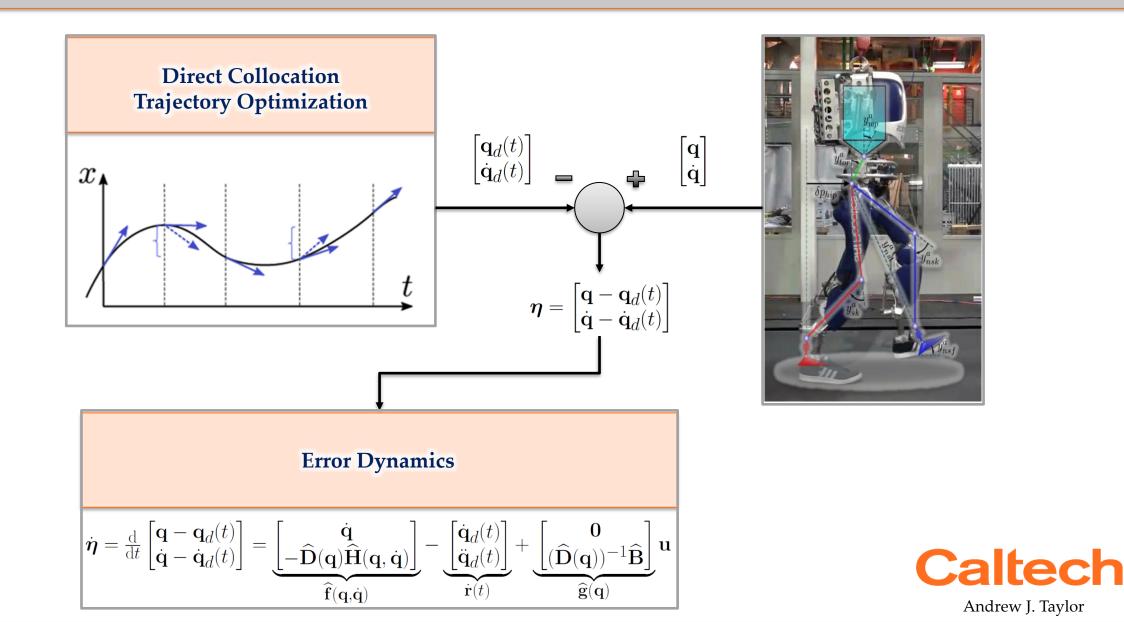
Mathematical Model



Robot Model

*Under-actuated output tracking formulation in full text.

Control Objective



$$\dot{\boldsymbol{\eta}} = \widehat{\mathbf{f}}(\mathbf{q}, \dot{\mathbf{q}}) - \dot{\mathbf{r}}(t) + \widehat{\mathbf{g}}(\mathbf{q})\mathbf{u}$$

$$\dot{\boldsymbol{\eta}} = \widehat{\mathbf{f}}(\mathbf{q}, \dot{\mathbf{q}}) - \dot{\mathbf{r}}(t) + \widehat{\mathbf{g}}(\mathbf{q})\mathbf{u}$$

Computed Torque (Feedback Linearization)

$$\mathbf{k}(\mathbf{q}, \dot{\mathbf{q}}, t) = \widehat{\mathbf{B}}^{-1}\widehat{\mathbf{D}}(\mathbf{q}) \left((\widehat{\mathbf{D}}(\mathbf{q}))^{-1}\widehat{\mathbf{H}}(\mathbf{q}, \dot{\mathbf{q}}) + \ddot{\mathbf{q}}_d(t) + \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t) \right)$$

$$\dot{\boldsymbol{\eta}} = \hat{\mathbf{f}}(\mathbf{q}, \dot{\mathbf{q}}) - \dot{\mathbf{r}}(t) + \hat{\mathbf{g}}(\mathbf{q})\mathbf{u}$$

$$\mathbf{k}(\mathbf{q}, \dot{\mathbf{q}}, t) = \hat{\mathbf{B}}^{-1}\hat{\mathbf{D}}(\mathbf{q})\left((\hat{\mathbf{D}}(\mathbf{q}))^{-1}\hat{\mathbf{H}}(\mathbf{q}, \dot{\mathbf{q}}) + \ddot{\mathbf{q}}_d(t) + \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t)\right)$$

$$\dot{\mathbf{q}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \boldsymbol{\eta} + \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t)$$

$$\dot{\boldsymbol{\eta}} = \hat{\mathbf{f}}(\mathbf{q}, \dot{\mathbf{q}}) - \dot{\mathbf{r}}(t) + \hat{\mathbf{g}}(\mathbf{q})\mathbf{u}$$

$$\mathbf{k}(\mathbf{q}, \dot{\mathbf{q}}, t) = \hat{\mathbf{B}}^{-1}\hat{\mathbf{D}}(\mathbf{q})\left((\hat{\mathbf{D}}(\mathbf{q}))^{-1}\hat{\mathbf{H}}(\mathbf{q}, \dot{\mathbf{q}}) + \ddot{\mathbf{q}}_d(t) + \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t)\right)$$

$$\mathbf{k}(\mathbf{q}, \dot{\mathbf{q}}, t) = \hat{\mathbf{B}}^{-1}\hat{\mathbf{D}}(\mathbf{q})\left((\hat{\mathbf{D}}(\mathbf{q}))^{-1}\hat{\mathbf{H}}(\mathbf{q}, \dot{\mathbf{q}}) + \ddot{\mathbf{q}}_d(t) + \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t)\right)$$

$$\dot{\boldsymbol{\eta}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \boldsymbol{\eta} + \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t)$$

$$\mathbf{Frror PD}$$

$$\boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t) = -\begin{bmatrix} \mathbf{K}_p & \mathbf{K}_d \end{bmatrix} \boldsymbol{\eta}$$

$$\dot{\boldsymbol{\eta}} = \hat{\mathbf{f}}(\mathbf{q}, \dot{\mathbf{q}}) - \dot{\mathbf{r}}(t) + \hat{\mathbf{g}}(\mathbf{q})\mathbf{u}$$

$$\mathbf{k}(\mathbf{q}, \dot{\mathbf{q}}, t) = \hat{\mathbf{B}}^{-1}\hat{\mathbf{D}}(\mathbf{q})\left((\hat{\mathbf{D}}(\mathbf{q}))^{-1}\hat{\mathbf{H}}(\mathbf{q}, \dot{\mathbf{q}}) + \ddot{\mathbf{q}}_d(t) + \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t)\right)$$

$$\mathbf{k}(\mathbf{q}, \dot{\mathbf{q}}, t) = \hat{\mathbf{B}}^{-1}\hat{\mathbf{D}}(\mathbf{q})\left((\hat{\mathbf{D}}(\mathbf{q}))^{-1}\hat{\mathbf{H}}(\mathbf{q}, \dot{\mathbf{q}}) + \ddot{\mathbf{q}}_d(t) + \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t)\right)$$

$$\mathbf{Frror PD}$$

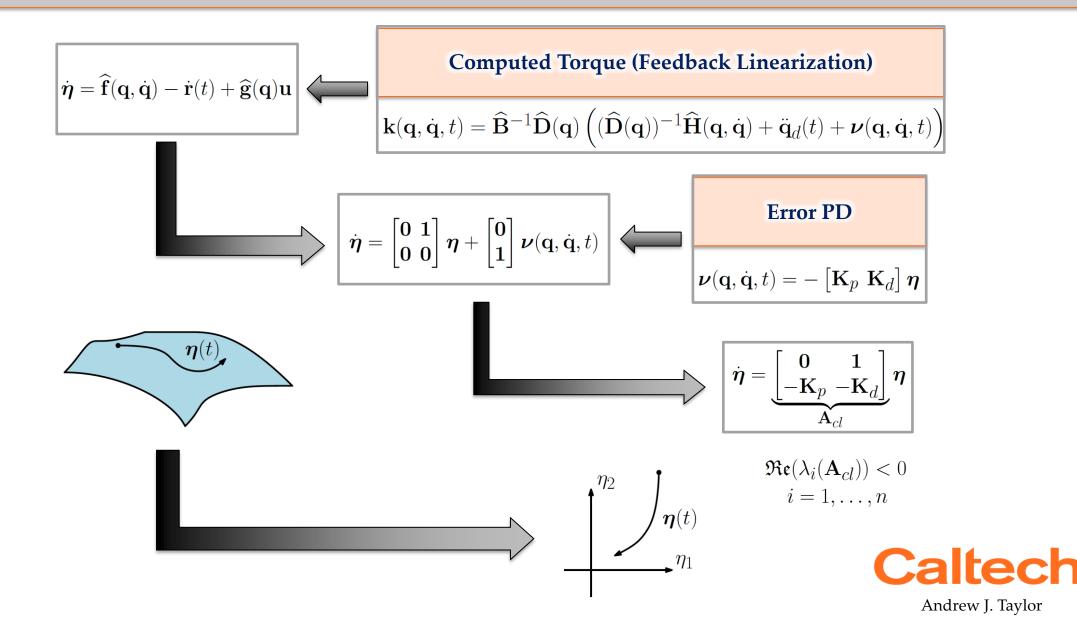
$$\boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t) = -\left[\mathbf{K}_p \ \mathbf{K}_d\right] \boldsymbol{\eta}$$

$$(\dot{\boldsymbol{\eta}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{K}_p & -\mathbf{K}_d \end{bmatrix} \boldsymbol{\eta}$$

$$\hat{\boldsymbol{\eta}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{K}_p & -\mathbf{K}_d \end{bmatrix} \boldsymbol{\eta}$$

$$\hat{\boldsymbol{\eta}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{K}_p & -\mathbf{K}_d \end{bmatrix} \boldsymbol{\eta}$$

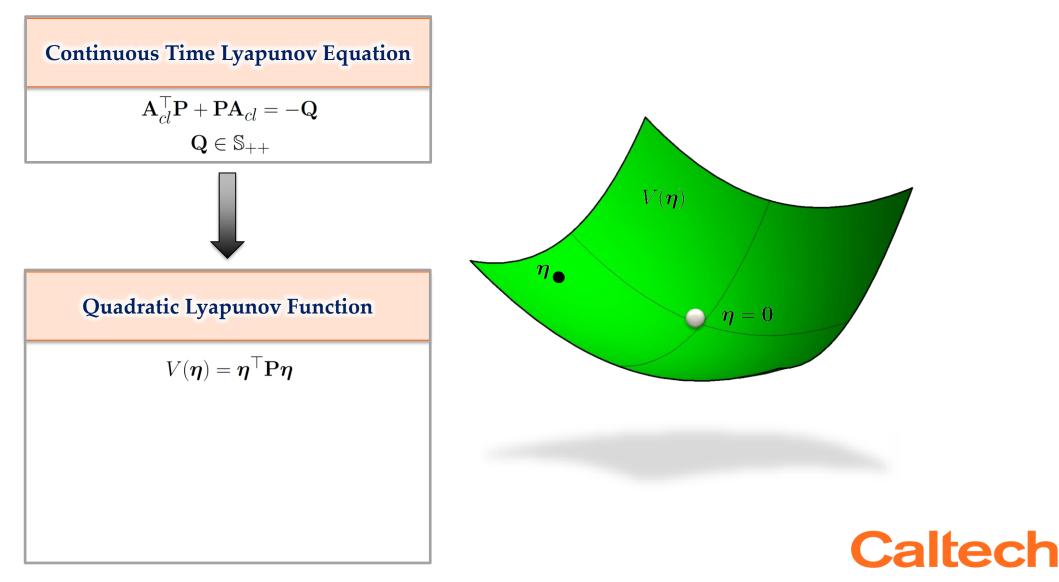
$$\hat{\boldsymbol{\eta}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{K}_p & -\mathbf{K}_d \end{bmatrix} \boldsymbol{\eta}$$

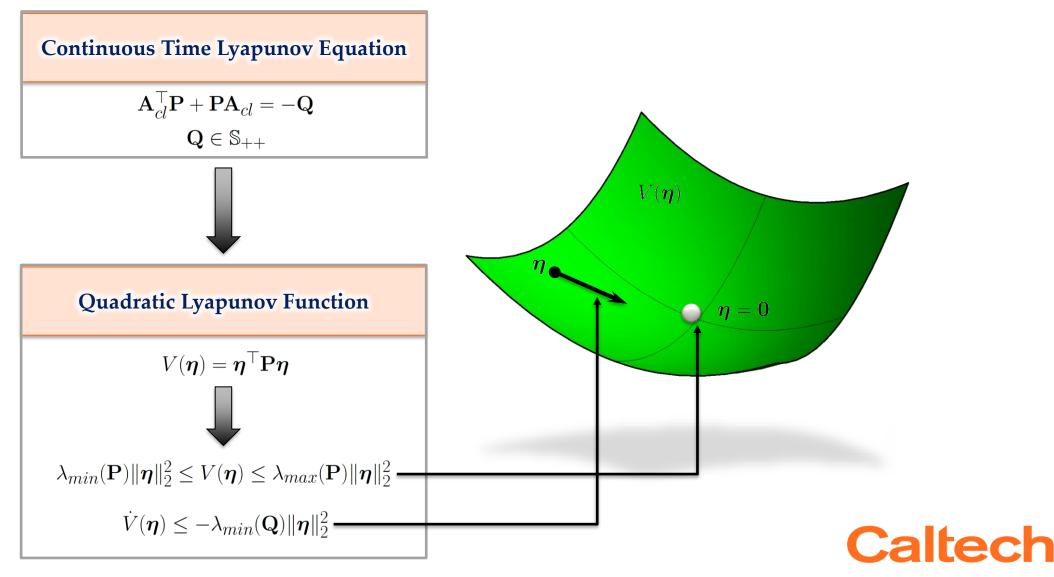


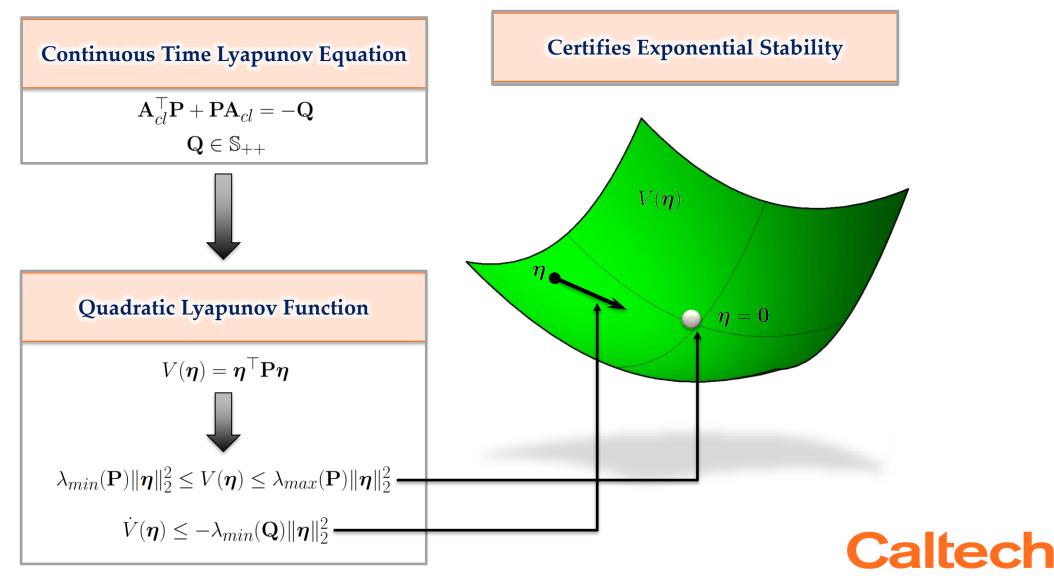
Continuous Time Lyapunov Equation

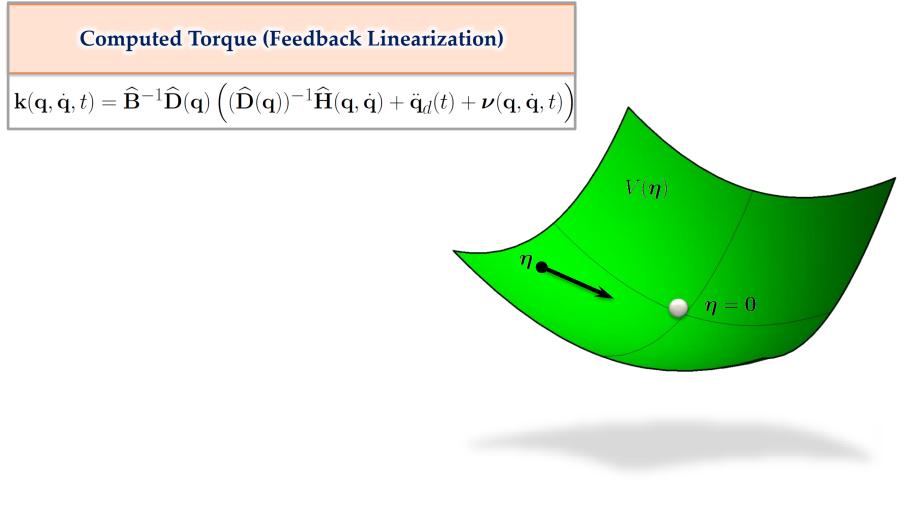
$$\mathbf{A}_{cl}^{ op}\mathbf{P}+\mathbf{P}\mathbf{A}_{cl}=-\mathbf{Q}$$

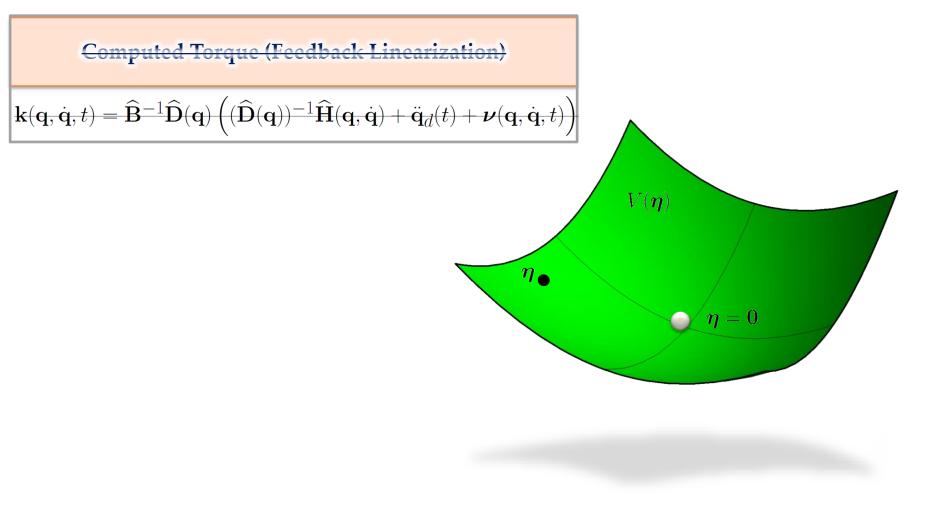
 $\mathbf{Q}\in\mathbb{S}_{++}$

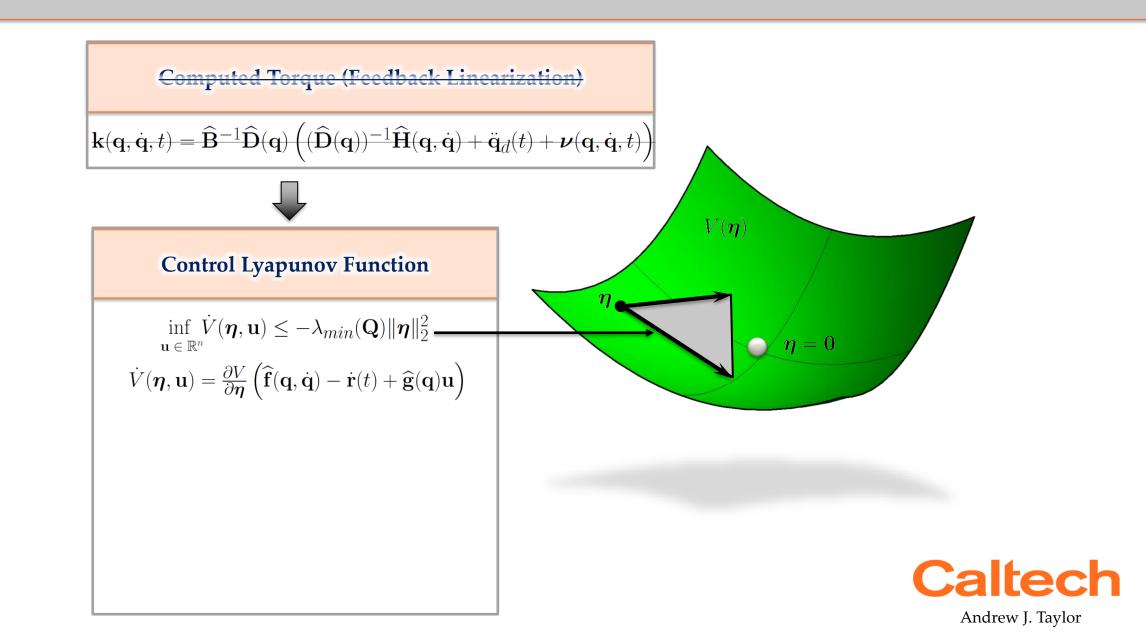


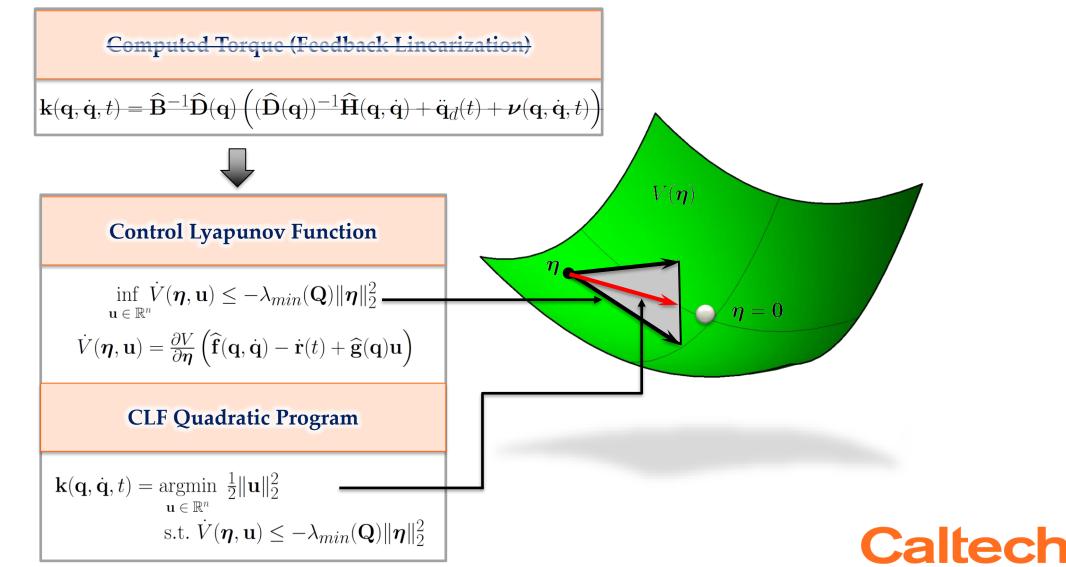




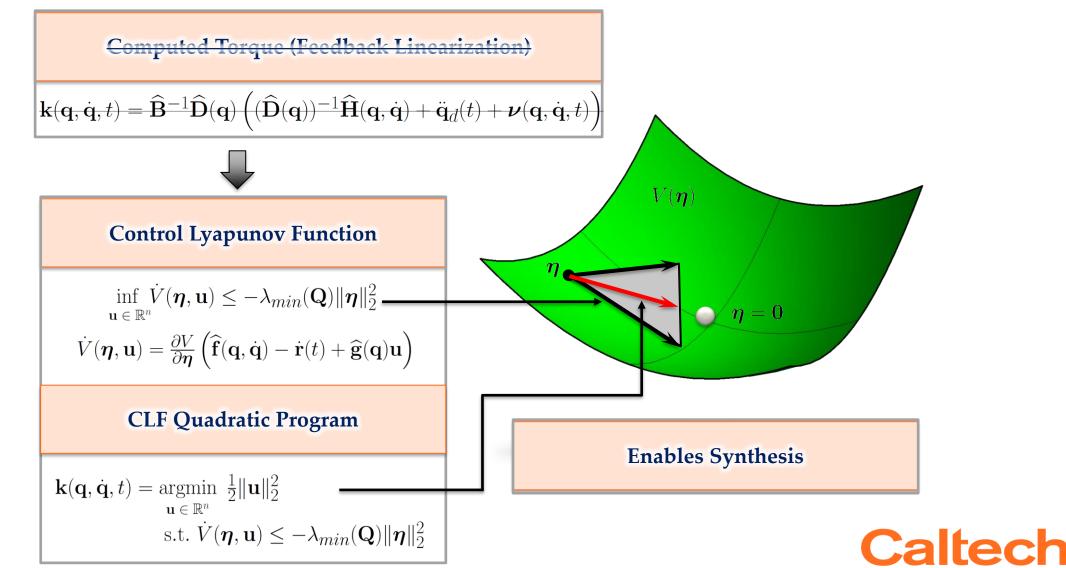








A. Ames, M. Powell, Towards the unification of locomotion and manipulation through control lyapunov functions and quadratic programs.



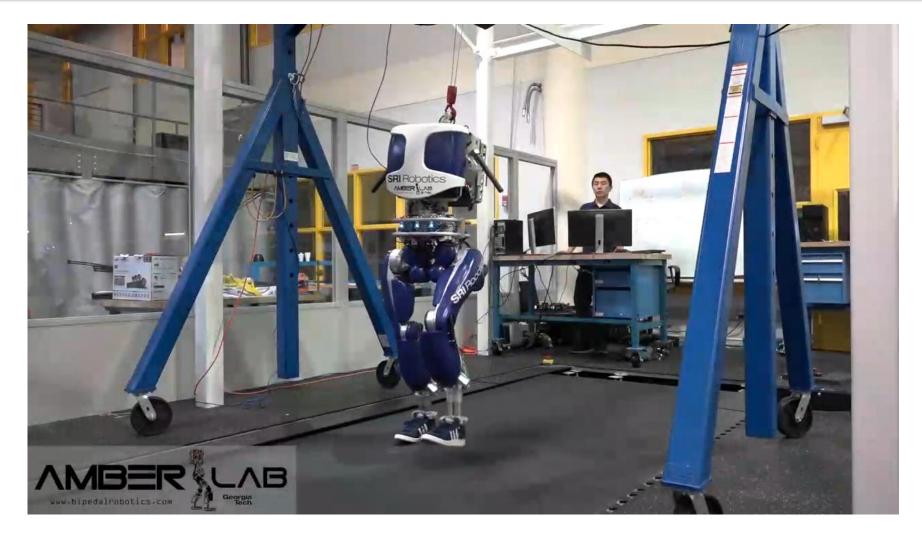
A. Ames, M. Powell, Towards the unification of locomotion and manipulation through control lyapunov functions and quadratic programs.

Stabilizing Controllers?

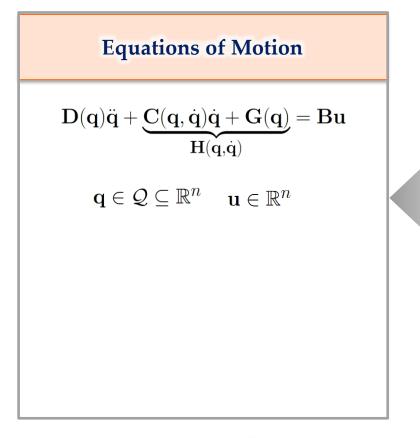


J. Reher, et al., Algorithmic foundations of realizing multi-contact locomotion on the humanoid robot DURUS

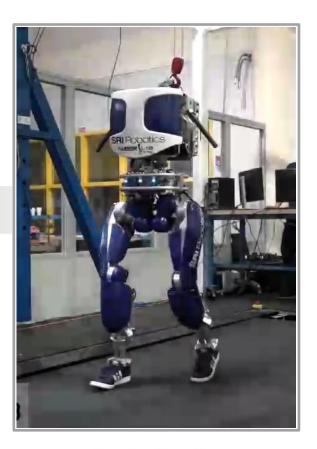
Stabilizing Controllers? (Not Quite)



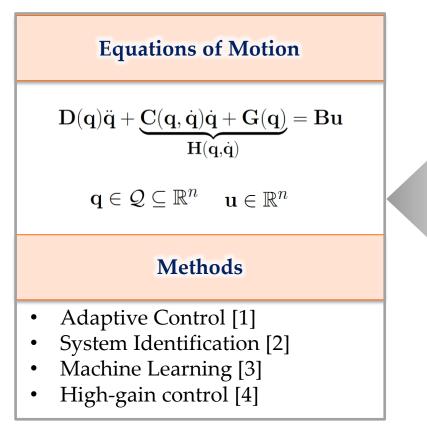
J. Reher, et al., Algorithmic foundations of realizing multi-contact locomotion on the humanoid robot DURUS



True Dynamics



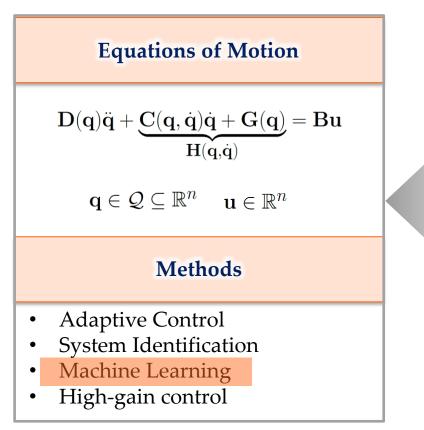
Physical Robot



True Dynamics

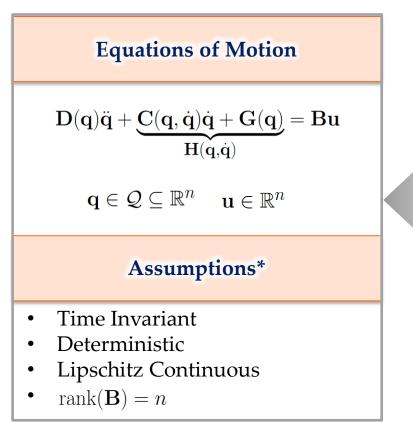
- [1] M. Krstic, et al., Nonlinear Adaptive Control Design
- [2] L. Ljung, System Identification
- [3] J. Kober, et al., Reinforcement learning in robotics: A survey
- [4] A. Ilchmann, et al., High-gain control without identification: a survey

Physical Robot



True Dynamics

Physical Robot



True Dynamics

Physical Robot

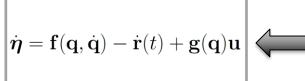
*Under-actuated requires relative degree assumption.

Can we use the same CLF?

Can we use the same CLF?

$$\dot{\boldsymbol{\eta}} = \mathbf{f}(\mathbf{q}, \dot{\mathbf{q}}) - \dot{\mathbf{r}}(t) + \mathbf{g}(\mathbf{q})\mathbf{u}$$

Can we use the same CLF?

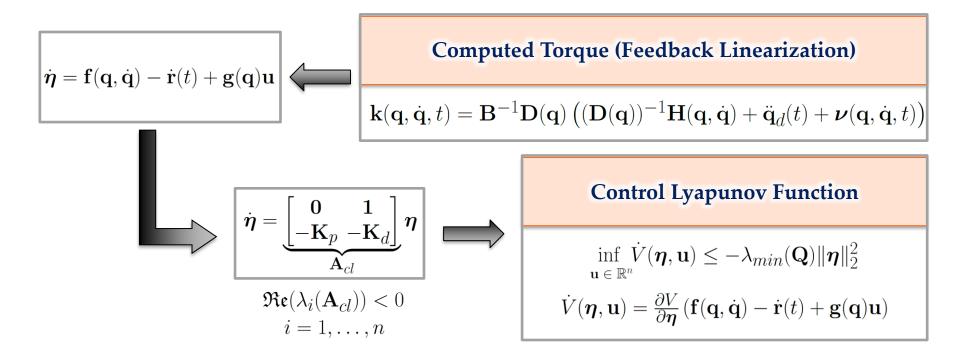


 $\label{eq:computed torque (Feedback Linearization)} \end{tabular}$ $\mathbf{k}(\mathbf{q}, \dot{\mathbf{q}}, t) = \mathbf{B}^{-1} \mathbf{D}(\mathbf{q}) \left((\mathbf{D}(\mathbf{q}))^{-1} \mathbf{H}(\mathbf{q}, \dot{\mathbf{q}}) + \ddot{\mathbf{q}}_d(t) + \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}, t) \right)$

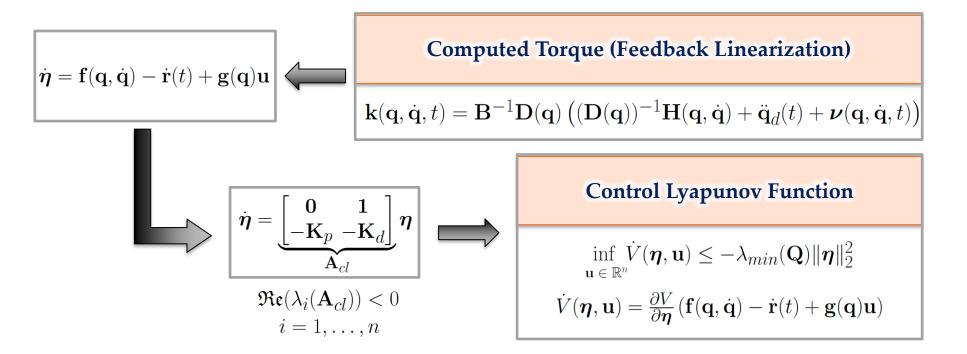
$$\hat{\boldsymbol{\eta}} = \underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{K}_p & -\mathbf{K}_d \end{bmatrix}}_{\mathbf{A}_{cl}} \boldsymbol{\eta}$$
$$\mathfrak{Re}(\lambda_i(\mathbf{A}_{cl})) < 0$$

$$i = 1, \dots, n$$

Can we use the same CLF? (We can!)



Can we use the same CLF? (We can!)

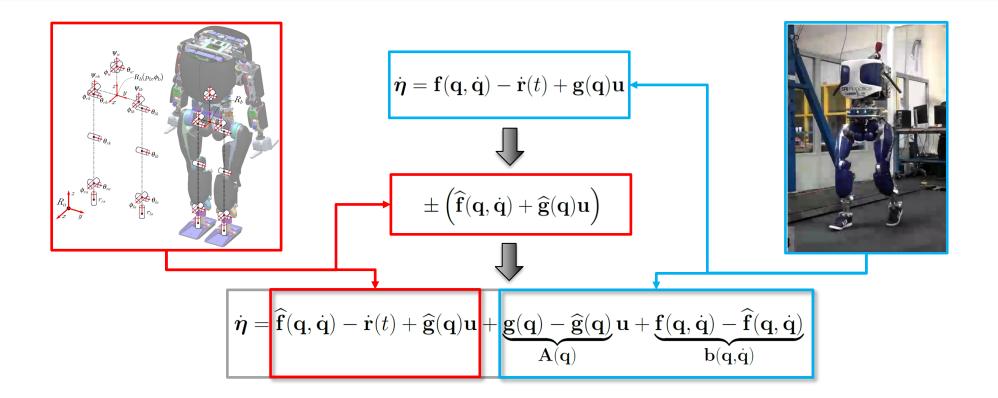


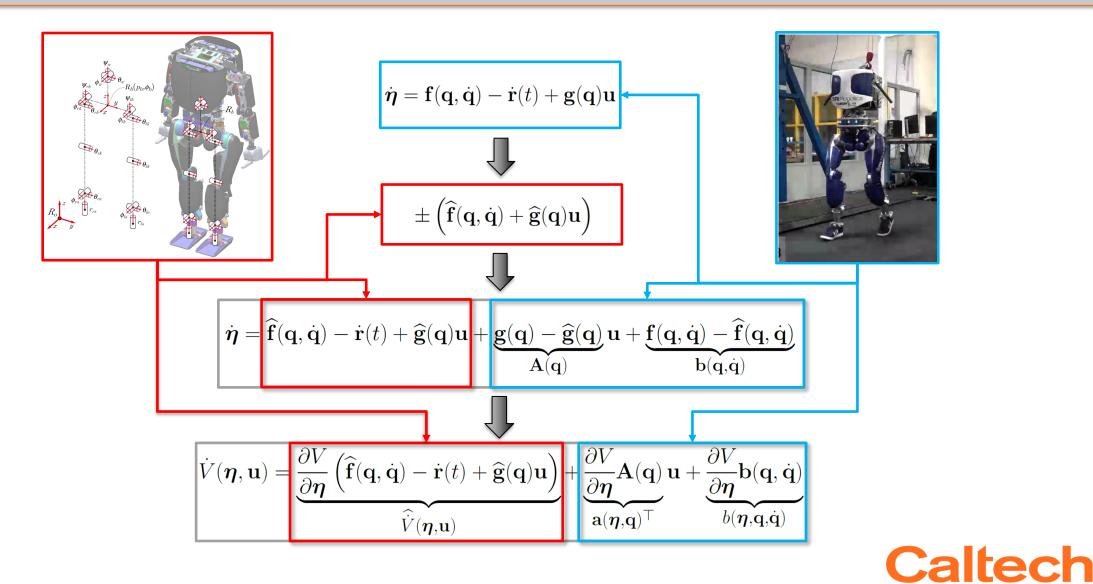
Don't know how to choose input

CLF Derivative Uncertainty

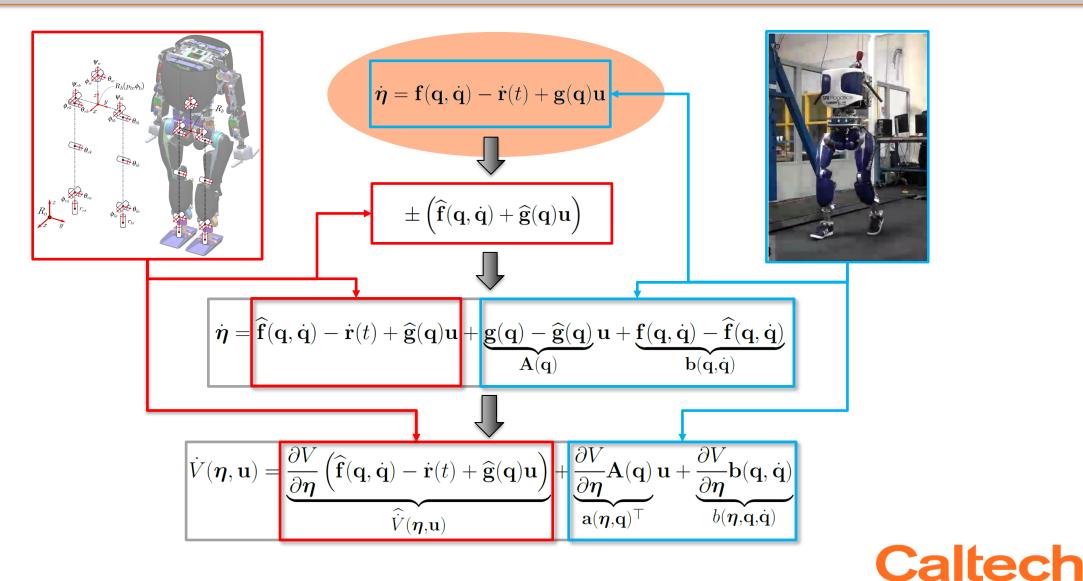
$$\dot{\boldsymbol{\eta}} = \mathbf{f}(\mathbf{q}, \dot{\mathbf{q}}) - \dot{\mathbf{r}}(t) + \mathbf{g}(\mathbf{q})\mathbf{u}$$

CLF Derivative Uncertainty

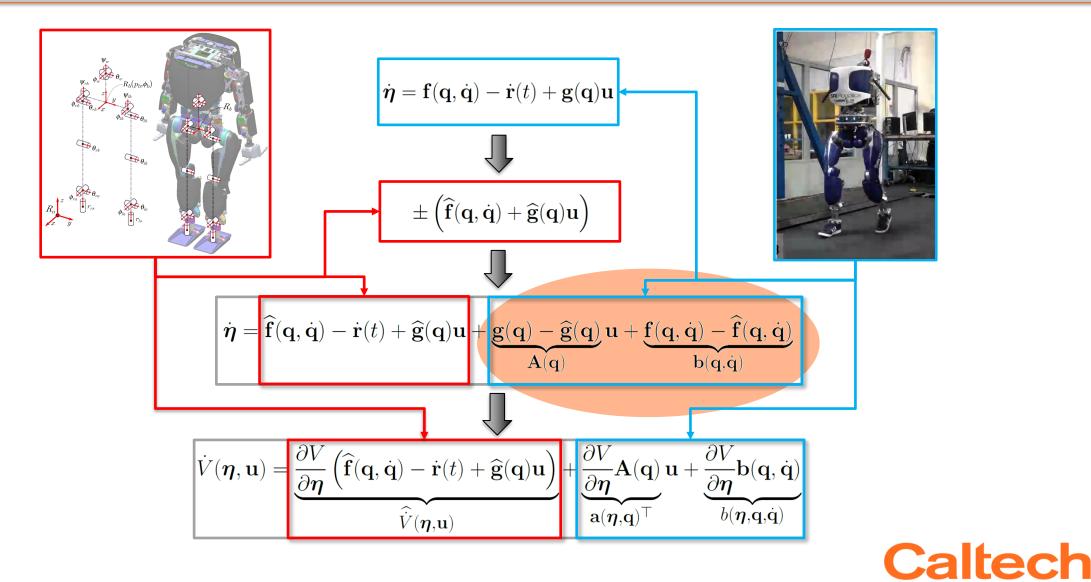




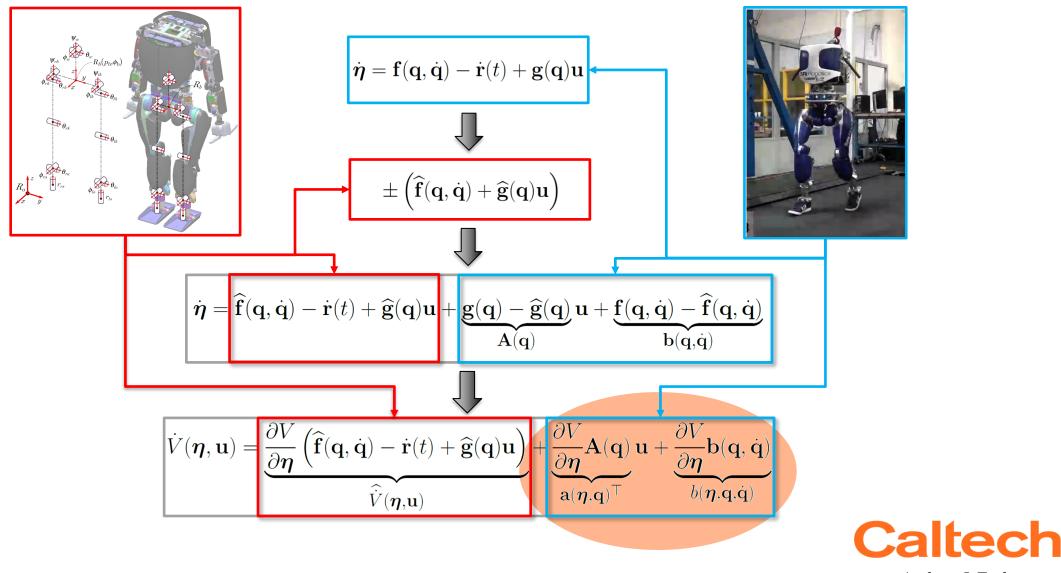
Learn the error dynamics

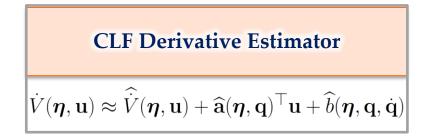


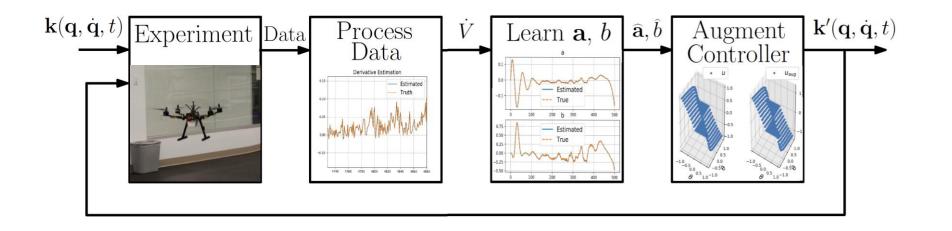
Learn the residual error dynamics

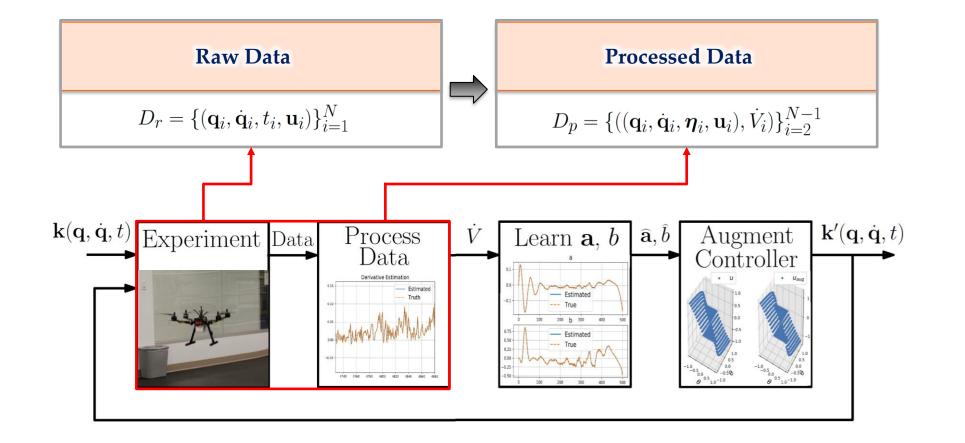


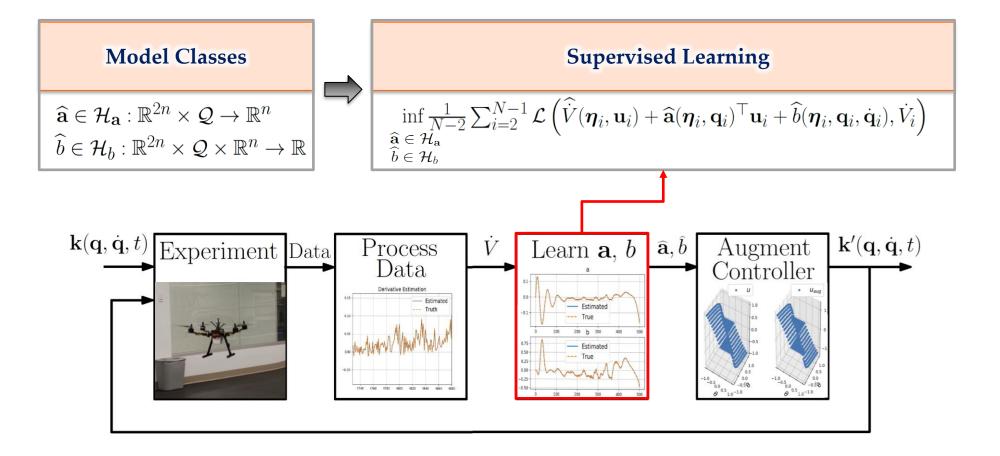
Learn the residual CLF dynamics

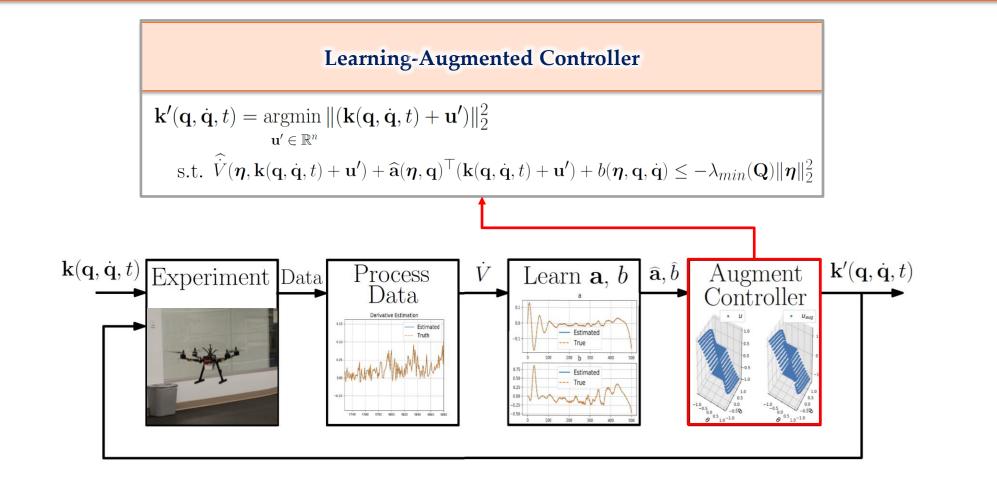












Episodic Learning

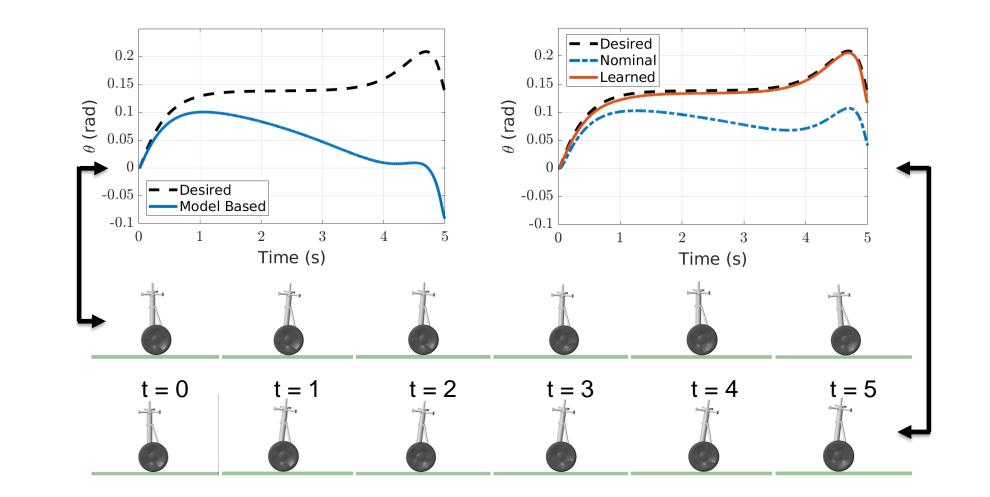
Algorithm 1 Dataset Aggregation for Control Lyapunov Functions (DaCLyF)

Require: Control Lyapunov Function V, derivative estimate \hat{V}_0 , model classes $\mathcal{H}_{\mathbf{a}}$ and \mathcal{H}_b , loss function \mathcal{L} , set of initial configurations \mathcal{Q}_0 , nominal state-feedback controller \mathbf{k}_0 , number of experiments T, sequence of trust coefficients $0 \le w_1 \le \cdots \le w_T \le 1$

S. Ross, et al., A reduction of imitation learning and structured prediction to no-regret online learning.

Segway System

Segway Simulation



Segway Simulation

Dataset Aggregation for Control Lyapunov Functions Segway Simulation

(additional PD stabilization upright, x1.5 Speed)

Future Work

- Compare learning at different levels of dynamics
 - Évaluate low-dimensional learning against lifted methods (RKHS, Koopman Operators)
 - Explore theoretical/empirical implications of low-dimensional learning on sample-complexity
- Implement episodic learning framework on Segway hardware
 - Understand sensitivity of algorithm to noise / filtering
 - Certify validity of assumptions on dynamic uncertainty
- Study convergence of models in episodic framework
 - Understand need for structured exploration in data acquisition
 - Develop trust coefficients for estimators across episodes

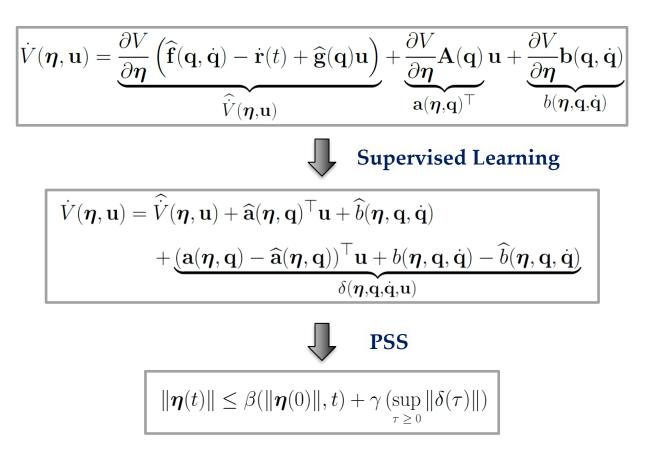
Thank You!

Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

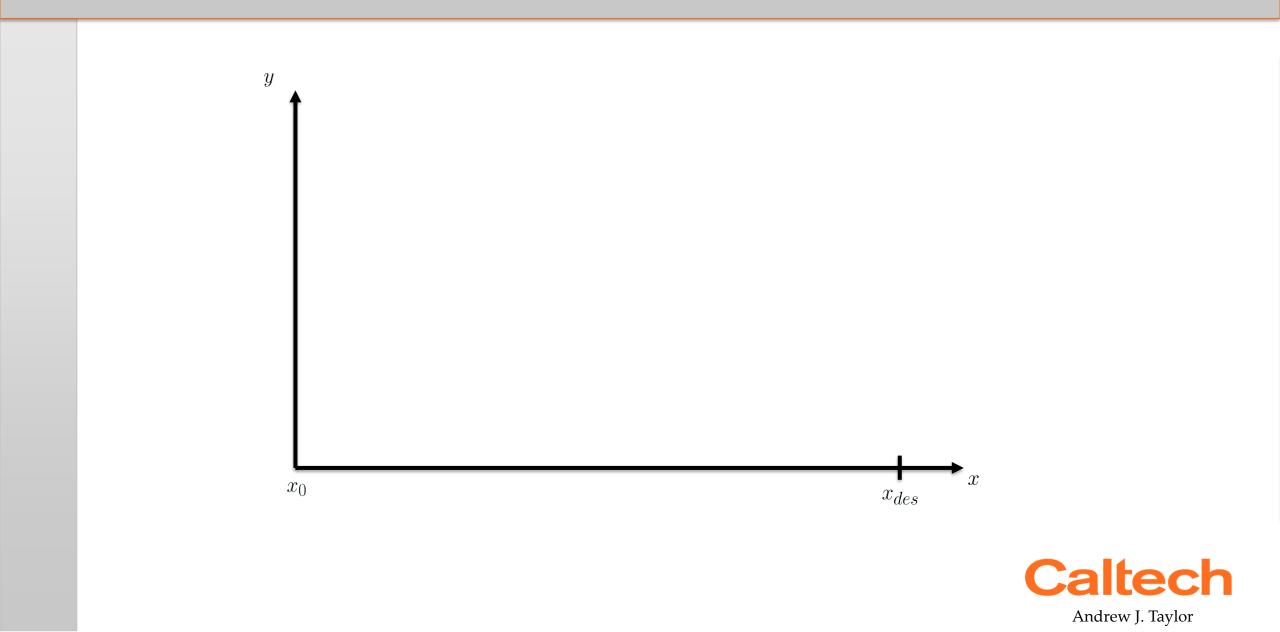
Andrew Taylor Victor Dorobantu Hoang Le Yisong Yue Aaron D. Ames

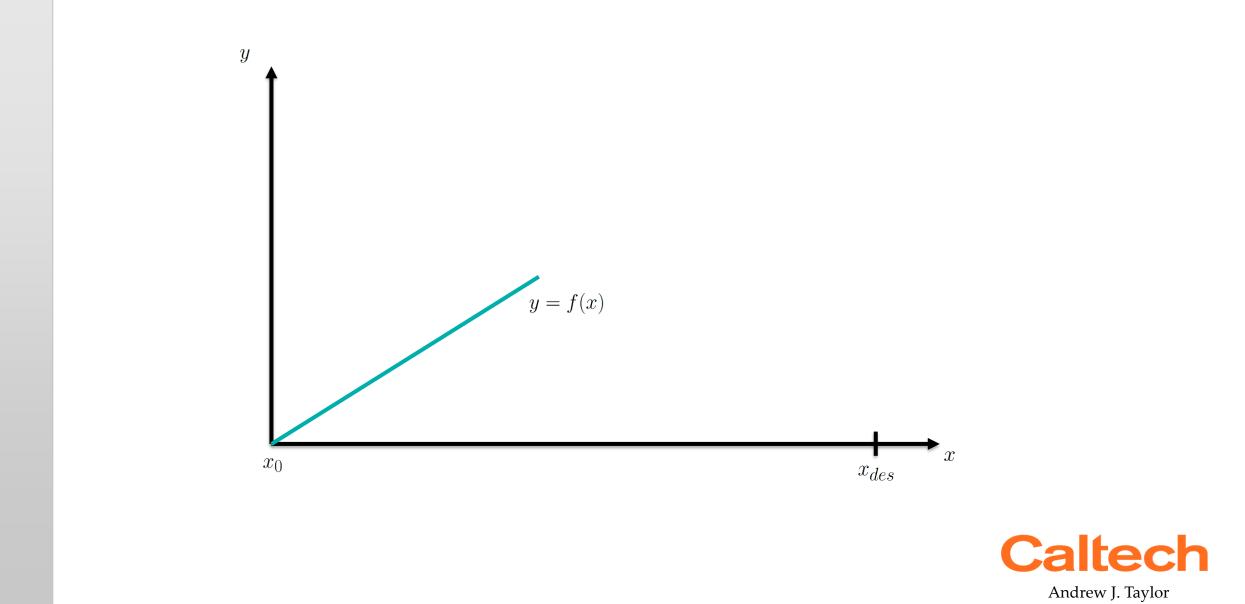
Projection -to-State-Stability (PSS)

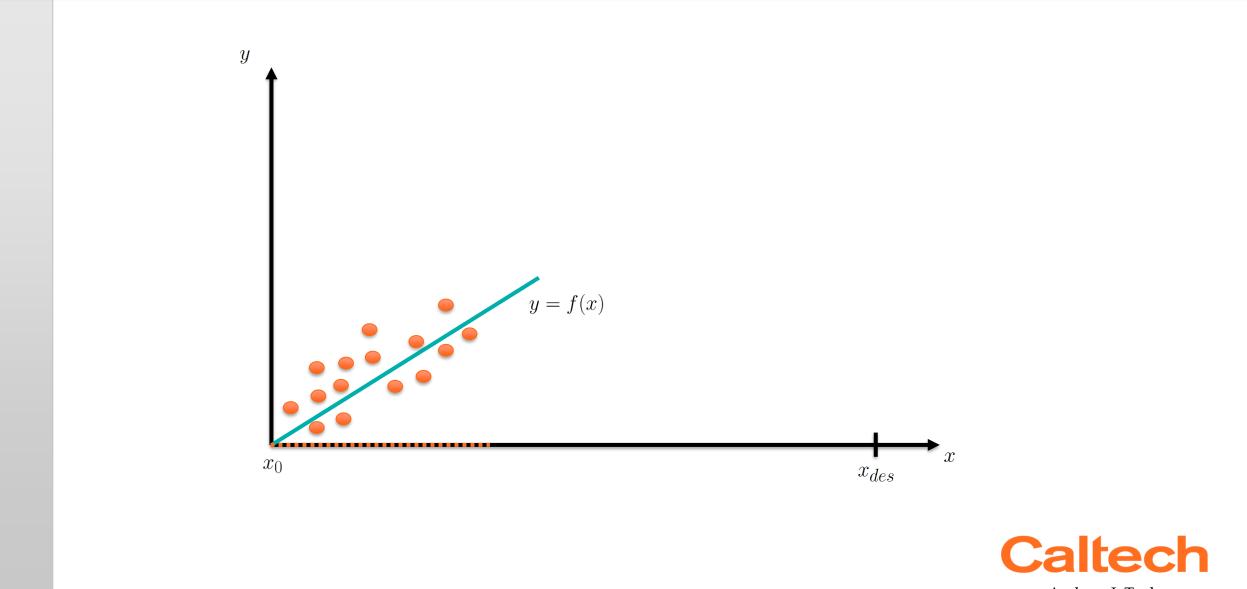
• Appearing at CDC 2019:

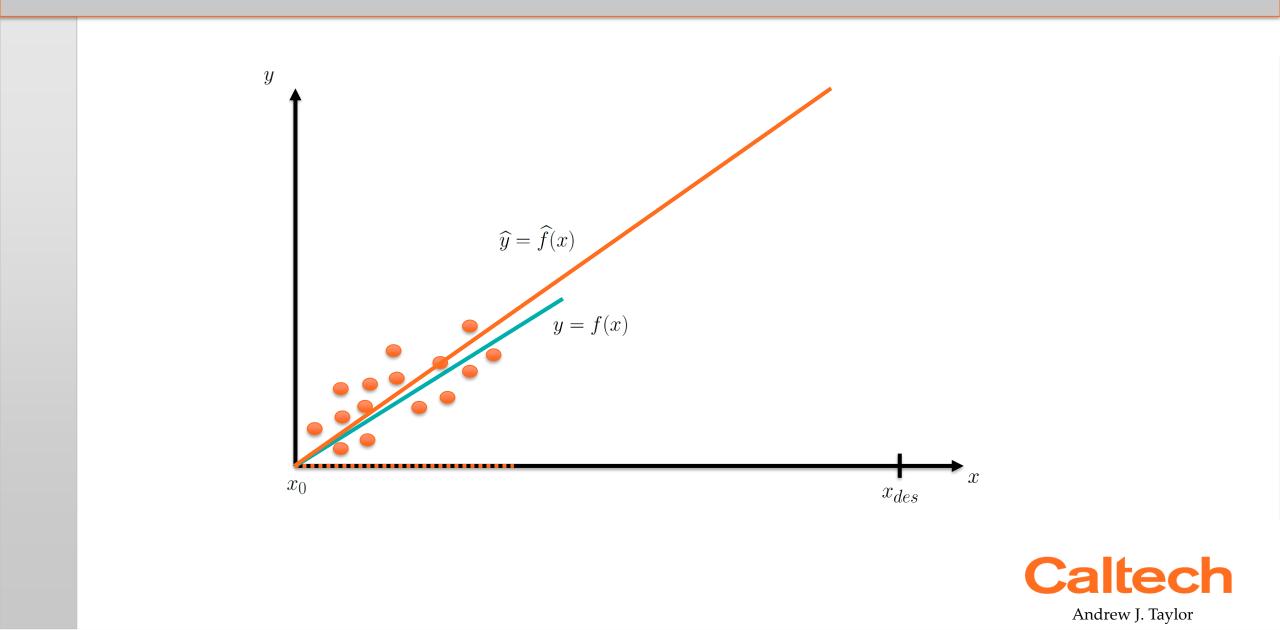


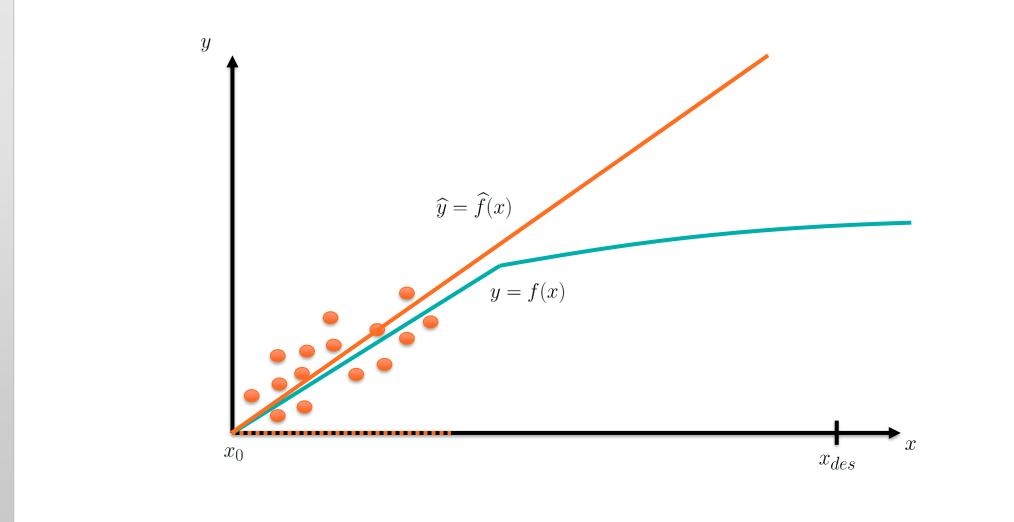
Taylor, Dorobantu, Le, Yue, Ames, A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability, CDC 2019











Caltech Andrew J. Taylor

