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Control in the real world is hard
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But: Pretty when it works…

W. Ma, et al., Bipedal robotic running with durus-2d: Bridging 

the gap between theory and experiment Andrew J. Taylor 3



Claim: Need to Bridge the Gap

Bridge the 
Gap

Theorems & Proofs Experimental Realization
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Contributions
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• Framework for studying impact of disturbances in a projected 
environment via Projection-to-State Stability (PSS)

• Apply PSS to study how error in machine learning models 
estimating dynamics leads to degradation in stability 
guarantees

• Data driven method for bounding residual error in machine 
learning models after learning for affine control systems



System Dynamics

Mathematical Model System Model

Equations of Motion
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System Dynamics

Mathematical Model System Model
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Assumptions

locally Lipschitz continuous
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Control Lyapunov Functions (CLFs)

Control Lyapunov Function
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Control Lyapunov Functions (CLFs)

Control Lyapunov Function

[1] Z. Artstein, Stabilization with relaxed controls, 

1983.

[2] E. Sontag, A universal construction of Artstein’s

theorem on nonlinear stabilization, 1989.

[3] R. Freeman, P. Kokotovic, Inverse Optimality in 

Robust Stabilization, 1996.

Feedback Controllers
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Control Lyapunov Functions (CLFs)

Control Lyapunov Function

CLF Quadratic Program[4]

[4] A. Ames, M. Powell, Towards the unification of locomotion and 

manipulation  through control lyapunov functions and quadratic programs. 

[1] Z. Artstein, Stabilization with relaxed controls, 

1983.

[2] E. Sontag, A universal construction of Artstein’s

theorem on nonlinear stabilization, 1989.

[3] R. Freeman, P. Kokotovic, Inverse Optimality in 

Robust Stabilization, 1996.
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Uncertain System Dynamics

True Dynamics Physical Robot

Equations of Motion
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• Adaptive Control [1]
• System Identification [2]
• Machine Learning [3]
• High-gain control [4]

Uncertain System Dynamics

True Dynamics Physical Robot

Equations of Motion

Methods

[1] M. Krstic, et al., Nonlinear Adaptive Control Design

[2] L. Ljung, System Identification

[3] J. Kober, et al., Reinforcement learning in robotics: A survey 

[4] A. Ilchmann, et al., High‐gain control without identification: a survey
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Uncertain System Dynamics

True Dynamics

Physical Robot

Equations of Motion

Assumptions

[1] A. Taylor, Episodic Learning with 

CLFs for Uncertain Robotic Systems, 2019 

locally Lipschitz continuous

[1]
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CLF Derivative Uncertainty
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CLF Derivative Uncertainty
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Learn the dynamicsCLF Derivative Uncertainty
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Learn the residual dynamicsCLF Derivative Uncertainty
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CLF Derivative Uncertainty Learn the residual CLF dynamics
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Learning Control Lyapunov Functions

CLF Derivative Estimator

A. Taylor, Episodic Learning with CLFs 

for Uncertain Robotic Systems, 2019 Andrew J. Taylor 11



Learning Control Lyapunov Functions

Raw Data Processed Data
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Learning Control Lyapunov Functions

Model Classes Supervised Learning
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Learning Control Lyapunov Functions

Learning-Augmented Controller

A. Taylor, Episodic Learning with CLFs 

for Uncertain Robotic Systems, 2019 Andrew J. Taylor 12



Episodic Learning

S. Ross, et al., A reduction of imitation learning and 

structured prediction to no-regret online learning.

A. Taylor, Episodic Learning with CLFs for Uncertain 

Robotic Systems, 2019 Andrew J. Taylor 13



Residual Learning Error
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Residual Learning Error

Can we quantify           ?
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Residual Learning Error

Can we quantify           ?

If so, what can we say about stability?
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Input-to-State Stability

Disturbed Dynamics Essentially Bounded
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Input-to-State Stability

R. Freeman, P. Kokotovic, Inverse Optimality in robust 

stabilization, 1996

E. Sontag, Y. Wang, On Characterizations of input-to-

state stability with respect to compact sets, 1995

Disturbed Dynamics Essentially Bounded

Andrew J. Taylor 15



Input-to-State Stability

R. Freeman, P. Kokotovic, Inverse Optimality in robust 

stabilization, 1996

E. Sontag, Y. Wang, On Characterizations of input-to-

state stability with respect to compact sets, 1995

Disturbed Dynamics Essentially Bounded

Andrew J. Taylor 15



Projection-to-State Stability
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Application of PSS to Learning
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Application of PSS to Learning

ISS

PSS

Projected Disturbance
Can we characterize     ?
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Uncertainty Functions

CLF Estimator Assumption

Andrew J. Taylor 19



Uncertainty Functions

CLF Estimator Assumption

Andrew J. Taylor 19



Uncertainty Functions to PSS
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Uncertainty Set Improvement

Andrew J. Taylor 21

Improvement



Uncertainty Set Improvement

Andrew J. Taylor 21

Improvement



Uncertainty Set Improvement

Andrew J. Taylor 21

Improvement



Uncertainty Function Construction
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Uncertainty Function Construction
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Simulation Results
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Simulation Results
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Conclusions

• Projection-to-State Stability offers 
alternative approach for studying 
stability with disturbances

• Data driven methods to bound residual 
uncertainty after learning

• Gap between data necessary for good 
performance and certifying stability.
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Conclusions
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Thank You!

A Control Lyapunov Perspective on Episodic 

Learning via Projection to State Stability

Andrew Taylor    Victor Dorobantu Meera Krishnamoorthy

Hoang Le     Yisong Yue    Aaron Ames
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Projection-to-State Stability
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ISS

PSS

C. Kellet, A compendium of comparison function results, 2014 3111/5/2022
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Projection-to-State Stability
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Identity Map is an ISS-CLF!
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Projection-to-State Stability
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Projected Dynamics
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IROS 2019 Backups
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Computed Torque

Computed Torque (Feedback Linearization)

Error PD
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Projection -to-State-Stability (PSS)

• Appearing at CDC 2019:

Andrew J. Taylor 

Supervised Learning

PSS

Taylor, Dorobantu, Le, Yue, Ames, A Control Lyapunov Perspective 

on Episodic Learning via Projection to State Stability, CDC 2019 4111/5/2022



Covariate Shift
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• Part I: Introducing the goal - “When using machine learning to reduce model 

uncertainty, what claims can be made on the stability of the resulting system?”
– Introduce nonlinear affine dynamics, introduce Lyapunov and Control Lyapunov

– Introduce uncertain nonlinear affine dynamics, show how they lead to model and residual Lyapunov

dynamics. 

– Introduce the particular learning problem of learning CLF derivative. Show what the a_tilde and b_tilde terms 

appear once you have estimators, and indicate that this sets up our residual error analysis. 

• Part II: Projection – to – State – Stability
– Write down the definition of input-to-state stability, ISS-CLFs, forward invariance that comes with ISS-CLF

– Highlighting our preceding learning structure, show that we really want a bound on in the state in terms of 

the norm of the disturbance in the CLF time derivative.

– This motivates the construction of PSS. Describe what PSS is, state Theorem 1, Eq (10) and Eq (14)

– State Corollary 1, connect back to Theorem 1 via quick walk proof sketch (get the implication right!!!)
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• Part III: Uncertainty Function + PSS

• Part IV: Results
– Consider an inverted pendulum system. Leave the majority of the details on what exactly the learning framework is to the paper. 

– Show that the inverted pendulum tracking performance becomes quite good compared to the PD controller

– Show the heat maps that show mild improvement in the worst case bounds.

– The conclusion here is very important. Essentially, there is a gap between good performance and certifying theoretical guarantees. We can get good 

performance without learning everything. But to make stronger claims on stability, we need more principled approaches for acquiring data. This 

analysis gives insight into what data holds value in acquiring when it comes to building these certificates. 

5011/5/2022


