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Abstract— The ability to generate dynamic walking in real-
time for bipedal robots with input constraints and underactua-
tion has the potential to enable locomotion in dynamic, complex
and unstructured environments. Yet, the high-dimensional na-
ture of bipedal robots has limited the use of full-order rigid
body dynamics to gaits which are synthesized offline and then
tracked online. In this work we develop an online nonlinear
model predictive control approach that leverages the full-order
dynamics to realize diverse walking behaviors. Additionally,
this approach can be coupled with gaits synthesized offline
via a desired reference to enable a shorter prediction horizon
and rapid online re-planning, bridging the gap between online
reactive control and offline gait planning. We demonstrate the
proposed method, both with and without an offline gait, on the
planar robot AMBER-3M in simulation and on hardware.

I. INTRODUCTION

From complex terrains inaccessible by wheels to human-
centered infrastructure impractical for quadrupeds, bipedal
robots hold the potential to operate in diverse environments
in which other robots struggle. To achieve this potential,
it is necessary to demonstrate a rich set of locomotion
behaviors that are dynamically stable. Bipedal robots ca-
pable of demonstrating diverse behaviors, much like their
human counterparts, leverage phases of underactuation. This
underactuation necessitates the dynamic coordination of the
whole-body dynamics of the robot—planning for the next
foot strike must occur throughout the step—in a manner that
accounts for the inherently nonlinear passive dynamics of the
system. Achieving diverse locomotion behaviors in complex
environments, therefore, motivates that whole-body planning
be done on the robot in real-time, thereby going beyond pre-
planned periodic walking gaits.

The challenge of underactuation present in bipedal loco-
motion has historically been approached through the syn-
thesis of gaits, i.e. dynamically stable reference trajectories.
Many of these approaches for gait synthesis use condensed
stability conditions like Zero-Moment Point (ZMP) [1], or
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Fig. 1: AMBER-3M platform using the whole-body nonlin-
ear MPC incorporating an HZD gait. The optimized feet and
torso trajectories are visualized along the prediction horizon.

rely on other reduced-order models that simplify elements
such as leg mass [2]–[4]. Alternatively, the method of Hybrid
Zero Dynamics (HZD) has presented a tool for synthesizing
periodic gaits that account for the underactuated and hybrid
nature of the full system dynamics [5]. Not only do gaits
synthesized via HZD possess formal stability guarantees, but
they have shown great efficacy when deployed experimen-
tally [6], [7]. Despite these successes, ensuring stability guar-
antees for high-dimensional bipedal systems often induces
computational requirements that limit gait synthesis via HZD
to an offline procedure. Adding a measure of flexibility to
bipedal locomotion is often done by synthesizing a library
of gaits [8]–[10], although this is limited to periodic gaits,
requires complex engineering solutions for gait transitions
and ensuring constraint satisfaction during execution.

In contrast, Model Predictive Control (MPC) provides a
tool for the online synthesis of general, aperiodic trajecto-
ries, allowing feedback of environmental parameters to be
incorporated into dynamic motion planning [11], [12]. In
particular, by optimizing directly over contact forces, these
methods have seen significant use in online motion planning
for quadrupedal robotics, with extensive experimental results
[13]–[15]. Online motion planning for bipedal robots has
typically required ZMP conditions [16]–[18], used simpli-
fied template models for planning and whole-body tracking
controllers [19]–[22], or used whole-body planning only for
non-walking tasks such as reaching [23]. Whole-body motion
planning results for bipedal walking have been predomi-



Fig. 2: Push recovery using the proposed method under a disturbance – notice the aperiodic stepping that was planned online
in order to reject the disturbance, something that is not possible with traditional HZD based methods.

nantly in simulation [24]–[27], or cancelled nonlinear dy-
namics through feedback-linearization before planning [28].
Notably, the online motion planning tools with remarkable
experimental results for quadrupedal locomotion have not yet
achieved commensurate results for bipedal robotics.

One of the key challenges in online whole-body motion
planning is computational limitations, as producing stable
locomotion requires optimizing over a sufficiently long hori-
zon. The methods for quadrupeds that have yielded experi-
mental results typically exploit low leg inertia to neglect leg
dynamics, reducing the state dimension in the optimization.
Transferring this reduction to bipedal systems is difficult,
however, as the legs compose a relatively high fraction of
the system’s total inertia. At the same time, simultaneously
considering both leg and torso dynamics results in many
degrees of freedom, making optimization over long time
horizons computationally intensive. Furthermore, the narrow
stance width and high center of mass of bipeds necessitate a
high planning frequency to counteract disturbances in under-
actuated dimensions. Thus, it is paramount to design whole-
body motion planners that balance the trade-off between
horizon length, model complexity, and planning frequency.

We make three contributions in this work. First, we
propose a nonlinear MPC approach for online whole-body
motion planning of bipedal robotic locomotion based on
existing methods used for quadrupedal locomotion [29],
which achieved a wide range of stable behaviors with a
planning horizon of 2 s and update frequency of up to
270Hz. Second, to reduce the computational burden of
online whole-body planning, we incorporate a stable walking
gait synthesized offline via Hybrid Zero Dynamics (HZD)
into the nonlinear optimization problem. This information
permits robust walking while optimizing over shorter horizon
lengths (0.2 s) that require less computational effort and
allow rapid re-planning (850Hz) – this will be important
for achieving whole-body planning on 3D walking systems.
Lastly, we experimentally validate the proposed approach on
the planar bipedal robot AMBER-3M [30], demonstrating
standing, stepping in place, and walking. To the best of our
knowledge, this is the first experimental demonstration of
online whole-body motion planning for bipedal walking.

II. BACKGROUND

A. System Dynamics

As walking consists of phases of intermittent contact
with the world, it is naturally modeled as a hybrid system
with of phases of continuous dynamics followed by discrete
transition events. The configuration of the robot may be
described by a set of d generalized coordinates:

q =
[
q⊤
b q⊤

j

]⊤ ∈ Q ≜ SE(3)×Qj , (1)

which include the base coordinates qb and joint coordinates
qj of the robot, respectively. To capture the various contact
modes the robot may evolve under, consider a collection
of domains {Dc} with Dc ⊆ X for c = 1, . . . , p, where
X is the tangent bundle of Q and p denotes the number
of contact modes. Associated with these domains are a
collection of guards {Sc} with Sc ⊆ X and reset maps
{∆c} with ∆c : X → X which are used to define how the
system behaves during transitions between contact modes.
Additionally, in each domain Dc the coordinates of the robot
are subject to a collection of nc holonomic constraints with
associated contact Jacobians Jc : Q → R6nc×d.

Using the Euler-Lagrange method, the system dynamics
in a given domain Dc are given by:

D(q)q̈+ h(q, q̇) = B(q)τ + Jc(q)
⊤λ, (2)

Jc(q)q̈+ J̇c(q, q̇)q̇ = 0, (3)

with symmetric positive definite inertia matrix D : Q →
Sd≻0, centrifugal, Coriolis, and gravitational terms h : X →
Rd, actuation matrix B : Q → Rd×m, torques τ ∈ Rm, and
constraint forces λ ∈ R6nc . Defining the state x ∈ X as:

x =
[
q⊤ q̇⊤]⊤ , (4)

and solving for the constraint forces λ via (2)-(3), the system
dynamics in a given domain Dc can be rewritten as:

ẋ =

[
q̇

D−1(−h+ J⊤
c λ)

]
︸ ︷︷ ︸

fc(x)

+

[
0

D−1B

]
︸ ︷︷ ︸

g(x)

τ , (5)



where the dependence on q and q̇ has been dropped for
notational simplicity. The resulting functions fc : X → R2d

and g : X → R2d×m are assumed to be continuously
differentiable on the domain Dc.

To model a transition from contact mode c to contact
mode c′, consider a state x− ≜ (q−, q̇−) ∈ Sc. The discrete
transition map is given by:

D(q−)(q̇+ − q̇−) = J⊤
c′(q

−)F, (6)
Jc′(q

−)q̇+ = 0, (7)

whereby solving for the impulse force F ∈ Rnc yields:

x+ ≜

[
q+

q̇+

]
=

[
q−

q̇− +D(q−)−1J⊤
c′(q

−)F

]
︸ ︷︷ ︸

∆c(x−)

. (8)

B. Nonlinear Model Predictive Control

Nonlinear MPC solves a optimization problem in a re-
ceding horizon manner by solving the following finite time
nonlinear optimal control problem:

minimize
u(·)

ϕ(x(tH)) +

∫ tH

0

l(x(t),u(t), t)dt, (9a)

subject to: x(0) = x0, (9b)
ẋ = f(x) + g(x)u, (9c)

x(t+i ) = ∆c(x(ti)), (9d)
heq(x,u, t) = 0, (9e)
hin(x,u, t) ≥ 0, (9f)

where tH is the length of the horizon, ϕ : X → R
is the terminal cost, l : X × Rm × R → R is the
time-varying running state-input cost, and ti are times of
contact mode transitions. The optimal control problem is
solved in real-time by updating the initial conditions (9b)
with the measured state of the system. Eq. (9c) describes
the system dynamics. heq : X × Rm × R → Req and
hin : X × Rm × R → Rin are generalized path equality
and inequality constraints, respectively. There exist various
approaches to solve this problem as outlined in [31]. We
take a direct-multiple shooting transcription of the problem
together with a sequential quadratic programming approach
to handle nonlinearities [32]. Inequality constraints (9f) are
implemented through relaxed-barrier penalty functions [33].

A key component in establishing closed loop stability
and recursive feasibility is the choice of terminal compo-
nents [34], either as terminal cost in (9a) or as constraints
on the terminal state, x(tH), to lie in a control invariant set.
In practice, for nonlinear complex systems, it is challenging
to prove that such conditions hold. Extending the prediction
horizon is a common choice to reduce the relative importance
of the terminal components [35]. However, for systems where
long prediction horizons are not feasible due to computa-
tional limits, careful choice of terminal components directly
translates to the overall performance of the controller, as we
will empirically show in this work.

C. Hybrid Zero Dynamics (HZD)

The HZD framework provides a formal method for pro-
ducing walking behaviors for robotic systems, and has been
successfully employed on a variety of platforms [5]–[7].
Synthesis of gaits via HZD is centered around defining
outputs y : Rd × Rr → Ro as:

y(q,α) = ya(q)− yd(q,α), (10)

where ya : Rd → Ro and yd : Rd × Rr → Ro are the
actual and desired outputs, respectively, and are assumed
to be continuously differentiable. The actual outputs ya are
chosen to satisfy a controllability property allowing them to
be driven to the desired outputs [5]. The desired outputs yd

depend on the set of parameters α ∈ Rr, which are chosen
to regulate the underactuated coordinates of the system.
More precisely, the zero dynamics manifold is defined as
the subspace of state coordinates for which the outputs and
their derivatives are zero:

Zc = {(q, q̇) ∈ X : y(q,α) = ẏ(q, q̇,α) = 0}. (11)

The parameters are then chosen to satisfy the hybrid in-
variance condition, ∆c(Zc ∩ Sc) ⊂ Zc, for each contact
mode c, which ensures that the underactuated coordinates
of the system remain stable through impacts. Ensuring
this condition is achieved by finding values of α through
nonlinear optimization [36]. Given a desired trajectory yd

from an HZD optimization program, a time-varying state
and input trajectory (xref(t),uref(t)) can be reconstructed.
Importantly, as this trajectory is designed for the full-order
hybrid dynamics, it will serve as a control invariant that will
be incorporated in our MPC formulation.

III. WHOLE-BODY MOTION PLANNING & CONTROL

Our nonlinear MPC problem will be constructed using the
OCS2 toolbox [37], which provides convenient interfaces
to the Pinocchio [38] rigid body library and CppAd [39]
automatic differentiation tools. Our formulation assumes that
the contact schedule associated with a given locomotion
mode (standing, stepping in place, walking) is given by
the user. The fixed contact schedule assumption simplifies
the optimization problem as the sequence of domains and
timing of contact mode transitions does not need to be
optimized [11], [29]. The position of the foot at contact is
captured in the optimization problem through its kinematic
relationship with joint coordinates. Moreover, we assume the
user provides a desired base pose and velocity to the MPC. In
this section we discuss the formulation of bipedal locomotion
planning as an MPC problem as posed in (9).

A. System Dynamics

Due to the affine relationship between generalized acceler-
ations q̈, torques τ , and contact forces λ in (2), and assuming
the torques do not directly impact the floating-base equations
of motion, the system dynamics in (5) may be rewritten
to interpret the joint accelerations q̈j and contact forces λ,
instead of the torques τ , as inputs. The computational benefit



Fig. 3: Multi-rate control architecture incorporating whole-body planning via MPC and low-level tracking controller.

of this reparametrization has been shown for reactive whole-
body control [40] and offline trajectory optimization [41]. To
see this, we write the dynamics (2) in terms of non-actuated
base coordinates and fully actuated joint coordinates:[

Dbb, Dbj

D⊤
bj Djj

] [
q̈b

q̈j

]
+

[
hb

hj

]
=

[
0
Bj

]
τ +

[
J⊤
c,b

J⊤
c,j

]
λ. (12)

The base acceleration may be expressed as:

q̈b = −D−1
bb

(
hb +

[
Dbj −J⊤

c,b

] [q̈j

λ

])
, (13)

and assuming the legs are fully actuated (Bj is invertible),
the corresponding joint torques may be expressed as:

τ = B−1
j

(
D⊤

bjq̈b + hj +
[
Djj −J⊤

c,j

] [q̈j

λ

])
, (14)

maintaining an affine dependence on q̈j and λ. The base dy-
namics in (13) fully encode the challenge of under-actuation
and encapsulate the core of the floating-base dynamics.
Equation (14) plays a secondary role and is only required
when formulating torques constraints. We may view the
control inputs to optimize over as:

u =
[
q̈⊤
j , λ⊤]⊤ , (15)

with the corresponding system dynamics defined as:

ẋ =

 q̇

D−1
bb

(
−hb −Dbjq̈j + J⊤

c,bλ
)

q̈j

 . (16)

In order to avoid large discontinuities in the optimized
trajectory, the contact transition maps in (9d) have been set to
identity maps for the online MPC program, with exponential
damping of the contact point velocity after impact being
regulated through the stance foot constraint in (20), defined
in section III-D. Inclusion of the impact dynamics in (8) will
be pursued in future work. Due to the assumption of a fixed
contact schedule, inclusion of the contact transition map does
not fundamentally change the complexity of the optimization
problem [11].

B. Cost Functions

The cost function is formulated as a nonlinear least square
cost around a given state and input reference trajectory. To
that end we define the set of tracking errors as follows:

εx = x−xref(t), εu = u−uref(t), εi =

pi − pi,ref(t)
vi − vi,ref(t)
ai − ai,ref(t),

 ,

where xref is the state reference, uref is the input reference,
and pi,vi,ai ∈ R3 with i ∈ {1, 2} are the Cartesian
position, velocity, and accelerations of the ith foot, with
corresponding references pi,ref ,vi,ref ,ai,ref . The references
xref and uref are defined heuristically (see Section III-C)
or via a walking gait synthesized offline using HZD. The
running state-input cost l is given by:

l(x,u, t) =
1

2
ε⊤x Qεx +

1

2
ε⊤uRεu +

1

2

∑
i

ε⊤i Wεi, (17)

where Q,R, and W are positive definite weighting matrices.
To pick an appropriate weighting for the terminal cost,

we approximate the infinite horizon cost by solving an
unconstrained Linear Quadratic Regulator (LQR) problem
using a linear approximation of the dynamics and a quadratic
approximation of the running costs (17) around the nomi-
nal stance configuration of the robot. The positive definite
Riccati matrix SLQR of the cost-to-go is used to define the
quadratic cost around the terminal reference state:

ϕ(x) =
ρ

2
εx(T )

⊤SLQRεx(T ), (18)

where ρ > 0 is a hyperparameter. Setting ρ = 1.0 would
express approximately equal importance of the integrated
running cost and terminal cost, and ρ → ∞ would make
the terminal cost behave as an equality constraint. We found
good performance for the heuristic reference at ρ = 1.0 and
for the HZD reference at ρ = 10.0. Note that this cost does
not penalize deviation from the stance configuration used to
produce the LQR solution, but rather provides a systematic
way to scale the relative importance of all of the degrees of
freedom of the robot in the cost.



C. Reference Trajectories
a) HZD Trajectory: HZD state and input reference

trajectories, xref(t) and uref(t), are found offline for the
whole-body nonlinear dynamics using the FROST toolbox
[36] and stored as Bézier polynomials. This process is
completed by fixing a target gait sequence and a forward
velocity, and adding various other state and input constraints
to a nonlinear trajectory optimization program which ensure
the underactuated dynamics of the system display stable peri-
odic behavior. For planar systems, stability can be enforced
directly in the optimization program [42], and for general
systems it can be verified a-posteriori via the Poincaré return
map [5]. The foot references pi,ref(t), vi,ref(t), and ai,ref(t)
are entirely determined by xref(t).

b) Heuristic Trajectory: To evaluate the relative impact
of using a gait synthesized offline via HZD in the cost
function, we produce a heuristic reference trajectory to be
compared against. In particular, the state trajectory xref(t)
is composed of a user-commanded base pose and velocity,
and a static nominal joint configuration. The input reference
uref(t) is defined with zero joint accelerations and contact
forces that are evenly distributed among each foot in contact
in the nominal joint configuration such that the weight
of the robot is compensated. The foot references pi,ref(t),
vi,ref(t), and ai,ref(t) are designed by extracting the nominal
touchdown and liftoff locations below the hip at the middle of
the contact phase and fitting a smooth hand-designed swing
reference trajectory. The heuristic and HZD-based terminal
state are visualized in Fig. 4.

D. Constraints
The following constraints are imposed in problem (9). All

inequality constraints are implemented as soft constraints
with relaxed log barrier functions [37].

a) Gait-Dependant Constraints: These constraints cap-
ture the different modes of each leg at any given point in
time determined by the specified gait sequence. We enforce
the user-defined gait and avoid foot scuffing of a swing leg
by constraining the swing foot motion in the orthogonal
direction to the ground surface, n ∈ R3, to follow the
Cartesian reference trajectory:

n⊤(ai − ai,ref(t) + kd(vi − vi,ref(t))

+ kp(pi − pi,ref(t))) = 0 (19)

where kd, kp ∈ R≥0 are feedback gains chosen to achieve
asymptotic tracking in the constrained space. The foot po-
sition in the direction parallel to the ground is not directly
constrained; rather, tracking is enforced via the cost function
described in Section III-B. For a stance leg we enforce a
stationarity constraint in Cartesian space through:

ai + kdvi = 0 (20)

b) Contact Force Constraints: The following con-
straints require the contact forces at each foot to match the
designation of swing and stance legs:{

λi = 0, i is a swing leg
λi ∈ C(n, µc), i is a stance leg. (21)

Fig. 4: Heuristic (left) and HZD (right) terminal states.

The first constraint requires no contact force from a swing
leg, as it does not contact the ground. The second constraint
requires the contact force of a stance leg to lie in the friction
cone C(n, µc) defined by the surface normal n and the
friction coefficient µc = 0.6. This is a second-order cone
constraint and is expressed in the local surface aligned frame:

µcλi,3 −
√

λ2
i,1 + λ2

i,2 ≥ 0. (22)

Note that only linear forces are present as the robot has point
feet, and that the friction constraint also enforces a unilateral
contact constraint as it requires λi,3 ≥ 0.

c) Joint and Torque Limits: The joint coordinates and
joint coordinate velocities are enforced to lie in the set
of minimum and maximum joint positions and velocities
through state inequality constraints: x ∈ [xmin,xmax]. Sim-
ilarly, the joint torques can be computed by Eq. (14) and
should lie within joint torque limits τ ∈ [τmin, τmax].

E. Low-Level Controller

As shown in Fig. 3, the state and input trajectories
generated by MPC are interpolated at a high frequency and
converted to a feed-forward control torques, τMPC, via (14).
As the feed-forward torque is model-based, we compensate
for model errors when executing the controller on hardware
by adding a proportional-derivative torque, τPD, and a friction
compensation torque, τFC, to the feed-forward torque:

τ = τMPC + τPD + τFC. (23)

The total torque τ is send to the open loop torque
controlled BLDC motors.

IV. AMBER IMPLEMENTATION & RESULTS

The AMBER-3M platform is a 5-link planar bipedal
robot, which has four open loop torque controlled BLDC
motors connected via harmonic drives to the hip and knee
joints. The total mass of the robot amounts to 21.6 kg,
approximately 40% of which is located in the legs. The
joint coordinates are given by qj ∈ Qj ⊂ R4, and, due
to the planar nature of the robot, the base coordinates are
given by qb =

[
xb, zb, θb

]⊤ ∈ SE(2) resulting in a state
vector x ∈ R14. The input u = (q̈j ,λ) ∈ R8 contains
the joint accelerations and 2D Cartesian contact forces at
the point-feet. Position and velocity measurements of the



TABLE I: MPC Planning Frequency (10 SQP Iterations)

Horizon Length [s] 2.0 1.0 0.5 0.2
MPC Frequency [Hz] 270 480 670 850

four joint angles and the base angle are present and used
to estimate the linear base position and velocity. No impact
measurement was used during the experiments. The time
discretization in the multiple shooting scheme is set to 15ms
and we allow for a maximum of 10 SQP iterations per MPC
problem. All planning, control, and estimation loops were
done on separate threads on an offboard Ryzen 9 5950x
CPU @ 3.4GHz. Benchmarks of the maximum obtainable
MPC frequency for different horizon lengths can be seen
in Table I. To isolate how the system’s behavior depends
on horizon length, all experiments were conducted with a
consistent MPC frequency of 100Hz.

As can be seen in the supplementary video [43], the
proposed MPC formulation is capable of simultaneously sta-
bilizing the underactuated system dynamics and synthesizing
valid motion trajectories for a broad range of gait pattern
and target velocities both in simulation and on hardware.
To evaluate the effect of changing reference signals on
the feasibility and robustness of the full control pipeline,
a sequence of disturbances of increasing magnitude was
applied in simulation with the following MPC configurations:

• MPC with No Terminal: The proposed whole-body MPC
with heuristic references for the running cost (refer to
Sec.III-C) and no terminal cost.

• MPC with Heuristic Terminal: Same as above, but with
heuristic references included as a terminal cost.

• MPC with HZD Reference: The proposed whole-body
MPC with HZD-based references for the running and
terminal cost (refer to Sec. III-C).

• Lumped Mass MPC: Uses a simplified dynamics model
for the planning stage by moving leg inertia to the torso,
otherwise identical to MPC with Heuristic Terminal.

• HZD with PD: An offline generated HZD trajectory
tracked by a joint level PD controller.

The results of these simulations are summarized in Ta-
ble II. First, we remark that the Lumped Mass MPC model
was introduced to highlight the effects of planning over the
full system dynamics for the given platform. The particular
structure of this model was chosen to resemble some prop-
erties of the simplified models mentioned in Sec. I, while
allowing for an implementation independent comparison.
Although the Lumped Mass MPC could withstand similar
disturbances to the whole-body MPC for a specified standing

TABLE II: Maximum disturbance rejection and step adaption
range (difference between smallest and largest observed step
length). MPC planning frequency clamped at 100 Hz.

Disturbance Rejection Step Range
Horizon Length 2 s 0.5 s 0.2 s 2 s
Lumped Mass MPC 2 N - - -
MPC + No Terminal 22 N - - 0.63 m
MPC + Heuristic 22 N 22 N - 0.67 m
MPC + HZD 22 N 22 N 20 N 1.10 m
HZD + PD 30 N 0.14 m

Fig. 5: Simulation results for the MPC with Heuristic Termi-
nal controller under a disturbance of 20N applied in the for-
ward (X) direction during the marked time of 1 s, including
states (top), torques (middle), and contact forces (bottom).
The commanded forward walking velocity is 0.5m/s.

position, it was observed to have only a marginal ability
to reject disturbances during dynamic motions like stepping
in place and walking, no matter the horizon length. This
confirms the need for whole-body online planning methods,
especially for robots like AMBER-3M which have a non-
negligible mass distribution concentrated in the legs.

Next, note that the MPC approach fails quickly when no
terminal cost is present. When a heuristic terminal com-
ponent is added, the robustness of the system dramatically
increases. Furthermore, when the proposed MPC approach
is combined with an HZD-based reference trajectory for
running and terminal costs, the horizon length can be short-
ened to as low as 0.2 seconds, which drastically reduces
the computational complexity. This could be essential to
enable the whole body NMPC approach to be applied to
a 3D biped with a larger number of degrees of freedom.
These results emphasize the importance of the careful design
of reference components, as their construction is tightly
coupled with the performance of the overall system. Finally,
it is important to note that at a disturbance of 22N during
walking the foot begins to slip, causing all of the MPC based
methods to fail. The HZD with PD method exhibits more
robustness to foot slipping and is therefore able to endure



Fig. 6: Gait tiles and joint angle trajectories for forward walking behavior of the whole body MPC at a horizon length of 1
second (top, left), and the whole body MPC+HZD at a horizon length of 0.5 seconds (bottom, right). The HZD reference
induces stronger periodic behaviors in the joint coordinates, correlated with the periodic nature of an HZD gait.

larger disturbances, as it does not model the disturbances.
Note that the HZD and PD method is limited to periodic
motions, and during disturbance rejection it heavily restricts
the allowable stepping range, as reported in Table II. On
the other hand, the MPC methods naturally have a large
variability in footstep locations in order to stabilize the
system. We believe that the ability to modulate step width
and exhibit aperiodic motions will be critical for bipedal
robots operating on real-world terrain. Future work will seek
to combine the robustness of the HZD and PD method with
the flexibility of the proposed MPC methods.

As seen in the supplementary video [43], the various pro-
posed approaches react differently to disturbances. Specifi-
cally, the phase-based HZD with PD control achieves stabil-
ity via implicit modification of the contact times, where the
limbs are accelerated along the predefined reference trajec-
tory. While this allows for significant disturbance rejection, it
leads to the inputs being saturated for non-negligible amounts
of time. On the other hand, in this MPC-based formulation,
stability is achieved via explicit modification of the footstep
locations, and is able to converge back to the desired ref-
erence trajectory in one to two steps while still satisfying
state and input constraints. Incorporating optimization over
the contact times into the MPC program is left as important
future work, which would combine the benefits of both

approaches. A depiction of the disturbance rejection behavior
of the MPC method can be seen in Fig. 5.

The MPC with a heuristic reference trajectory and a
horizon length of 1.0 second, and the MPC with an HZD
trajectory and a horizon length of 0.5 seconds were then
deployed on the AMBER hardware. As seen in Fig. 6,
both methods produce forward walking and have a visually
distinct gait. We see in the joint angle trajectory data that the
MPC with HZD method displays strong periodic behavior,
similar to periodic motions expected with an HZD approach.

V. CONCLUSION AND OUTLOOK

In this work, we proposed a whole-body nonlinear MPC
framework that enables online gait optimization using the full
rigid body dynamics of a bipedal system. The viability of the
presented control structure was shown in simulation and on
hardware in a variety of robust dynamic behaviors, including
standing, stepping in place, and walking. The addition of a
trajectory tracking cost around an offline generated HZD ref-
erence enabled similarly robust locomotion at a significantly
shorter planning horizon when compared with a heuristic
reference or no reference. Motivated by the experimental
results and promising reduction in computational complexity,
future work will investigate the theoretical properties of
using HZD trajectories as terminal components, as well as
extensions to 3D walking bipeds.
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