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Abstract: Modern nonlinear control theory seeks to develop feedback controllers
that endow systems with properties such as safety and stability. The guarantees
ensured by these controllers often rely on accurate estimates of the system state for
determining control actions. In practice, measurement model uncertainty can lead
to error in state estimates that degrades these guarantees. In this paper, we seek
to unify techniques from control theory and machine learning to synthesize con-
trollers that achieve safety in the presence of measurement model uncertainty. We
define the notion of a Measurement-Robust Control Barrier Function (MR-CBF)
as a tool for determining safe control inputs when facing measurement model un-
certainty. Furthermore, MR-CBFs are used to inform sampling methodologies
for learning-based perception systems and quantify tolerable error in the resulting
learned models. We demonstrate the efficacy of MR-CBFs in achieving safety
with measurement model uncertainty on a simulated Segway system.
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1 Introduction

Ensuring safety is of utmost importance in modern control systems, and as system complexity in-
creases, it is necessary to rigorously encode safety during the controller design process. Examples
of safety-critical control applications include autonomous vehicles, aerospace vehicles, and indus-
trial robotics. In practice, these control systems rely on feedback involving imperfect or uncertain
measurements models, which can lead to inaccurate state estimation and unsafe behavior if not prop-
erly accounted for in controller design. Furthermore, modern control challenges increasingly call
for complex measurement systems incorporating data-driven learning methods, such as perception.
Thus it is paramount that controllers and learning models be robustly designed to ensure safety in
the presence of uncertain measurement models.

Control Barrier Functions (CBFs) [1, 2] have become increasingly popular [3, 4, 5] as a tool for
achieving safety in the form of set invariance [6]. Furthermore, the integration of CBFs with
machine-learning approaches for reducing model uncertainty has shown great promise theoretically
[7, 8, 9] and in application [10, 11]. Synthesis of CBFs that encode certain safety properties have
been explored from the perspective of backup sets [12] and data-driven methods [13]. In many of
these settings it is assumed that controllers synthesized via CBFs have perfect access to measure-
ments of the system state. In practice, these measurements are often corrupted due to uncertainty in
measurement models and sensor noise. Safety guarantees in the presence of measurement noise has
been addressed from a stochastic perspective [14, 15], and robustness to error in the estimate of the
state was considered via a sub-tangentiality condition in [16]. The work in [17, 18] considers ro-
bust CBF formulations where worst-case disturbance bounds and perfect knowledge of the actuated
dynamics enable robust safety. This existing work has not considered the case when the actuated
dynamics are uncertain, nor a data-driven approach where deterministic error in the state estimate
can be mitigated through learning.
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In this work, we consider safety for a setting in which the system states are not directly observed.
Inspired by examples of vision-based control [19, 20, 21], we suppose that state information is
observed through a complex transformation, e.g. a camera image, and that an inverse mapping from
measurement to state must be estimated. While many impressive demonstrations in the context of
robotics rely on carefully calibrated systems in such settings [22], rigorous investigations relating
data-driven calibration to learning in the context of control are just beginning to receive attention.
This setting has been studied from the perspective of robustness and sample complexity for linear
systems, where the main safety concern is stability [23, 24]. Other work has considered methods
for ensuring obstacle avoidance under loss of observability for nonlinear systems [25], but do not
consider learning directly. To the best of our knowledge, no such analysis exists for nonlinear
systems through the perspective of CBFs.

The main contributions of this work are threefold. Firstly, we present the novel definition of
Measurement-Robust Control Barrier Functions (MR-CBF) which modify the definition of CBFs
to enable robustness to error in measurement models. Secondly, we show how MR-CBFs can be in-
corporated into convex optimization-based controllers that can be efficiently solved online. Lastly,
we outline how MR-CBFs can be used to guide data sampling methodology in order to ensure that
the resultant model yields tolerable error.

This remainder of this paper is organized as follows. In Section 2 we provide a review of Control
Barrier Functions and their use in synthesizing safe controllers. Section 3 explores the impact of
measurement model uncertainty on safety, and defines the MR-CBF as a tool for synthesizing con-
trollers that guarantee safety in the absence of perfect state observation. In Section 4 we explain how
data-driven learning methods can be used to reduce measurement model uncertainty and yield valid
MR-CBFs. Finally, Section 5 presents simulation results which demonstrate the efficacy of MR-
CBFs in enforcing safety in the presence of measurement model uncertainty for a Segway system.
Additional details including proofs are provided in supplementary appendices.

2 Background

In this section we provide a review of safety and Control Barrier Functions (CBFs). These definitions
will be used in quantifying how measurement uncertainty impacts safety guarantees.

Consider the nonlinear control affine system given by:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn, u ∈ Rm, and f : Rn → Rn and g : Rn → Rn×m are locally Lipschitz continuous on
Rn. Given a locally Lipschitz continuous state-feedback controller k : Rn → Rm, the closed-loop
system dynamics are:

ẋ = fcl(x) , f(x) + g(x)k(x). (2)
The assumption on local Lipschitz continuity of f , g, and k implies that fcl is locally Lipschitz
continuous. Thus for any initial condition x0 , x(0) ∈ Rn there exists a time interval I(x0) =
[0, tmax) such that x(t) is the unique solution to (2) on I(x0) [26].

The notion of safety that we consider is formalized by specifying a safe set in the state space that
the system must remain in to be considered safe. In particular, consider a set C ⊂ Rn defined as the
0-superlevel set of a continuously differentiable function h : Rn → R, yielding:

C , {x ∈ Rn : h(x) ≥ 0} . (3)

We refer to C as the safe set, and note ∂C , {x ∈ Rn : h(x) = 0} and Int(C) , {x ∈ Rn : h(x) >

0}. We assume that C is nonempty and has no isolated points, that is, Int(C) 6= ∅ and Int(C) = C.
This construction motivates the following definitions of forward invariance and safety:

Definition 1 (Forward Invariant & Safety). A set C ⊂ Rn is forward invariant if for every x0 ∈ C,
the solution x(t) to (2) satisfies x(t) ∈ C for all t ∈ I(x0). The system (2) is safe with respect to
the set C if the set C is forward invariant.

Before defining Control Barrier Functions as a tool for synthesizing safe controllers, we note that a
continuous function α : (−b, a)→ R, with a, b > 0, is said to belong to extended class K (α ∈ Ke)
if α(0) = 0 and α is strictly monotonically increasing. If a, b = ∞, limr→∞ α(r) = ∞, and
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limr→−∞ α(r) = −∞, then α is said to belong to extended class K∞ (α ∈ K∞,e). Furthermore,
we note c ∈ R is referred to as a regular value of a continuously differentiable function h : Rn → R
if h(x) = c =⇒ ∂h

∂x (x) 6= 0. These enable the definition of Control Barrier Functions as follows:

Definition 2 (Control Barrier Function (CBF), [2]). Let C ⊂ Rn be the 0-superlevel set of a con-
tinuously differentiable function h : Rn → R with 0 a regular value. The function h is a Control
Barrier Function (CBF) for (1) on C if there exists α ∈ K∞,e such that for all x ∈ C:

sup
u∈Rm

ḣ(x,u) ,
∂h

∂x
(x)f(x)

︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)

︸ ︷︷ ︸
Lgh(x)

u > −α(h(x)). (4)

This condition can be equivalently stated as:

‖Lgh(x)‖2 = 0 =⇒ Lfh(x) > −α(h(x)). (5)

The inequality in the definition of CBFs is strict to ensure that the controllers synthesized via CBFs
are locally Lipschitz continuous [17]. Given a CBF h for (1) and a corresponding α ∈ K∞,e, we
can consider the pointwise set of all control values that satisfy (4):

Kcbf(x) , {u ∈ Rm | Lfh(x) + Lgh(x)u ≥ −α(h(x))} . (6)

A main result in [27, 1] relates controllers taking values in Kcbf(x) to the safety of (2) on C:

Theorem 1. Given a set C ⊂ Rn defined as the 0-superlevel set of a continuously differentiable
function h : Rn → R, if h is a CBF for (1) on C, then any locally Lipschitz continuous controller
k : Rn → Rm, such that k(x) ∈ Kcbf(x) for all x ∈ C, renders the system (2) safe w.r.t. C.

This result motivates the construction of a pointwise optimal controller seeking to minimize a cost
associated with the choice of input. To this end, we consider the safety-critical control formula-
tion [28] that seeks to filter a hand-designed but potentially unsafe locally Lipschitz continuous
controller, kd : Rn → Rm, to find the nearest safe action:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)).

The validity of h as a CBF ensures the feasibility of this optimization problem, and the resulting
controller is locally Lipschitz continuous [17].

3 Measurement-Robust Control Barrier Functions

In this section we explore the impact of measurement model uncertainty on safety guarantees, and
propose the notion of a modified Control Barrier Function that is robust to such errors.

In many practical applications, the state x is not directly available to the controller, but rather a
state-dependent sensor measurement:

y = p(x), (7)

where p : Rn → Rk is assumed to be locally Lipschitz continuous. We assume the relationship
between the measurement and the true state is deterministic, and note the application of CBFs in the
context of stochastic differential equations has been considered in [14]. Future work will consider
the unification of the results in this paper with the stochastic setting. We further assume there
exists a locally Lipschitz continuous function q : Rk → Rn such that for all x ∈ Rn, we have
q(p(x)) = x. This assumption implies that the state can be uniquely determined from any given
measurement. This bijective relationship would allow the measurements to be redefined as the state
of the system if the function p was known, but that is often not the case in many modern control
applications (such as when using vision).

While the function p is often determined by the physical attributes of a system, a locally Lipschitz
continuous estimate of the function q, given by q̂ : Rk → Rn, is constructed to determine an
estimate of the state, x̂. For notational simplicity we define the measurement-estimate function
v̂ : Rn → Rk × Rn such that v̂(x) = (p(x), q̂(p(x)). We also define the set p(C) ⊂ Rk as
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the image of the safe set under the measurement function, the set q̂(p(C)) ⊂ Rn as the image
of the safe set under the state estimate function, and v̂(C) as the image of the safe set under the
measurement-estimate function.

The function q̂ is constructed either via system and measurement models, or from data using learning
methods, and thus its accuracy in estimating q degrades with imperfections in sensor fabrication and
integration, or imperfections in learning models and training data. Thus we assume that our state
estimate is related to the true state as follows:

x̂ , q̂(y) = x + e(x), (8)

for an unknown function e : Rn → Rn that is defined implicitly via q̂. In practice, the function
e can often be characterized via upper bounds on model uncertainty or via data-driven arguments
for learning models (discussed further in Section 4). In particular, we assume that while e(x) is
not known for a particular value of x, it is known that e(x) ∈ E(y) for a measurement dependent,
compact pointwise set E(y). This leads to the definition of the following two pointwise sets:

X̂ (x) , {x̂ ∈ Rn | ∃ e ∈ E(p(x)) s.t. x̂ = x + e} , (9)

X (y) , {x ∈ Rn | ∃ e ∈ E(y) s.t. x̂ = x + e} . (10)

The first of these two pointwise sets can be interpreted as all possible state estimates corresponding
to a particular state, restricted by the possible error dictated by E(p(x)). While it is not directly
computable without knowledge of p, this set will play an important conceptual role in Section 4 to
argue about how data can be used to determine error bounds. The second pointwise set consists of
all potential states that may yield a measurement-state estimate pair.

Since a controller enforcing the CBF condition (4) requires exact knowledge of the state x, we
propose an alternative condition which depends on only the set X (y) and the state estimate x̂. To
ensure safety with a CBF, it is sufficient for the following condition to hold for all y ∈ p(C):

sup
u∈Rm

inf
x∈X (y)

∂h

∂x
(x)(f(x) + g(x)u) + α(h(x)) ≥ 0 . (11)

This condition implies that there exists a control input that renders the system safe for all possible
states corresponding to a given state estimate. Verifying that this condition holds can be difficult
for an arbitrary CBF, and it is not easily (or possibly) enforced in a convex-optimization based
controller. To resolve these problems, we introduce the following definition:

Definition 3 (Measurement-Robust Control Barrier Function (MR-CBF)). Let C ⊂ Rn be the 0-
superlevel set of a continuously differentiable function h : Rn → R with 0 a regular value. The
function h is a Measurement-Robust Control Barrier Function (MR-CBF) for (1) on C with param-
eter function (a, b) : Rk → R2

+ if there exists α ∈ K∞,e such that for all (y, x̂) ∈ v̂(C):

sup
u∈Rm

Lfh(x̂) + Lgh(x̂)u− (a(y) + b(y)‖u‖2) > −α(h(x̂)). (12)

Verifying this condition over v̂(C) may not be possible, but as will be seen in Section 4, the set X̂ (x)
can be used to provide sufficient conditions under which (12) is met. The definition of a MR-CBF
introduces the non-positive term−(a(y)+b(y)‖u‖2) to the control barrier condition, requiring that
a stronger degree of safety be enforced compared to the typical control barrier condition. Further-
more, the norm of the input appears in this term, indicating that for large values of b large inputs can
lead to unsafe behavior. This condition is equivalently stated as:

‖Lgh(x̂)‖2 ≤ b(y) =⇒ Lfh(x̂) > −α(h(x̂)) + a(y). (13)

In contrast to the implication in (5), the size of set for which the antecedent in (13) is met may be
larger, requiring the natural dynamics to be safe (Lfh(x̂) > −α(h(x̂)) + a(y)) in a larger region.
Given a MR-CBF h for (1) on C with parameter function (a, b) and a corresponding α ∈ K∞,e, we
can consider the pointwise set of all control values that satisfy (12):

Kmr-cbf(y, x̂) , {u ∈ Rm | Lfh(x̂) + Lgh(x̂)u− (a(y) + b(y)‖u‖2) ≥ −α(h(x̂))} , (14)

for (y, x̂) ∈ v̂(C). Given this construction, we have the following result relating the existence of a
MR-CBF to safety under the presence of measurement model uncertainty:
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Theorem 2. Let a set C ⊂ Rn be defined as the 0-superlevel set of a continuously differentiable
function h : Rn → R. Assume the functions Lfh : Rn → R, Lgh : Rn → Rm, and α ◦
h : Rn → R are Lipschitz continuous on C with Lipschitz coefficients LLfh, LLgh, and Lα◦h,
respectively. Further assume there exists a locally Lipschitz function ε : Rk → R+, such that
maxe∈E(y) ‖e‖2 ≤ ε(y) for all y ∈ p(C). If h is a MR-CBF for (1) on C with parameter function
(ε(y)(LLfh + Lα◦h), ε(y)LLgh), then any locally Lipschitz continuous controller k : Rk × Rn →
Rm, such that k(y, x̂) ∈ Kmr-cbf(y, x̂) for all (y, x̂) ∈ v̂(C), renders the system (2) safe w.r.t. C.

A proof of this theorem can be found in Appendix A. To more clearly see how the upper bound on
the estimate error, ε(y), manifests in the MR-CBF condition, we note the particular condition that
must be satisfied for this theorem is given by:

sup
u∈Rm

Lfh(x̂) + Lgh(x̂)u− ε(y)(LLfh + Lα◦h + LLgh‖u‖2) > −α(h(x̂)). (15)

Thus as ε(y) becomes smaller, the level of robustness required by an MR-CBF approaches that of a
regular CBF for the same set C, and recovers the original control barrier condition with no estimate
error. Furthermore, smaller values of ε(y) can be interpreted as leading to an enlarging of the region
over which the condition (13) holds.

One advantage of this approach for resolving the impact of measurement model uncertainty on safety
is that the constraint in (14) remains convex. This constraint can then be directly integrated into an
optimization based controller as follows:

k(y, x̂) = argmin
u∈Rm

1

2
‖u− kd(x̂)‖22 (MR-OP)

s.t. Lfh(x̂)− (LLfh + Lα◦h)ε(y) + Lgh(x̂)u− LLghε(y)‖u‖2 ≥ −α(h(x̂)).

This problem is in fact a second-order cone program (SOCP), with an explicit conversion to standard
form provided in Appendix B. As this constraint is non-smooth, existing methods for computing
closed-form solutions via Lagrangian duality and assessing Lipschitz continuity [17] are not appli-
cable. Future work will consider methods from variational analysis to study the Lipschitz continuity
of solutions to this problem [29]. In practice, a slack variable, δ, is often added to ensure constraint
feasibility. This relaxation is penalized in the cost with a large coefficient p ∈ R++:

k(y, x̂) = argmin
(u,δ)∈Rm×R

1

2
‖u− kd(x̂)‖22 + pδ2 (R-MR-OP)

s.t. Lfh(x̂)− (LLfh + Lα◦h)ε(y) + Lgh(x̂)u− LLghε(y)‖u‖2 ≥ −α(h(x̂))− δ.

While this relaxed controller does not necessarily enforce the desired safety constraint, if δ remains
small the impact on safety can be understood through the notion of projection-to-state safety [7].
Furthermore, this relaxation ensures that the resulting controller is locally Lipschitz continuous as
made explicit in Appendix C via the methods in [30].

4 Learning for Measurement Model Uncertainty Reduction

In this section we explore how data-driven learning methods can be used to reduce measurement
model uncertainty and yield valid MR-CBFs.

The previous section provides a method for guaranteeing safety in the absence of perfect state ob-
servation which relies on specifying a valid MR-CBF h. The condition in (12) restricts admissible
h and C with a stronger condition than the typical CBF condition. A CBF h which is valid when
states are perfectly observed may no longer be valid in the presence of measurement model uncer-
tainty. In this section, we reconsider the requirement that h be a valid MR-CBF as a specification on
measurement or calibration errors. Clearly, as measurement model uncertainty becomes arbitrarily
close to 0, any valid CBF will be a valid MR-CBF. We now make this intuition precise.

By applying the logic of the implication (13), we see that (15) is true as long as for all (y, x̂) ∈ v̂(C),

ε(y) < max

{‖Lgh(x̂)‖2
LLgh

,
Lfh(x̂) + α(h(x̂))

LLfh + Lα◦h

}
. (16)
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This expression gives the maximum admissible error under which the MR-CBF condition will hold
for a given set of dynamics and function h. It is not easy to reason about this quantity directly, since
the measurement-estimate set v̂(C) is difficult to characterize without knowledge of p. Instead, we
reformulate this expression to depend on the associated underlying state x. We do so by interpreting
ε as a function of the state via ε(y) = ε(p(x)) , ε(x) and appealing conceptually to the set X̂ (x)
defined in (9) to consider all possible observations at a given state.

Theorem 3. Let C, h, LLfh, LLgh, Lα◦h, and ε be defined as in Theorem 2. Then h is a MR-CBF
for (1) on C with parameter function (ε(y)(LLfh + Lα◦h), ε(y)LLgh) if for all x ∈ C:

ε(x) < max

{‖Lgh(x)‖2
2LLgh

,
Lfh(x) + α(h(x))

2(LLfh + Lα◦h)

}
, ε̄(x) . (17)

Even though the true states will not be observed during operation, this result gives a sufficient
condition on error with respect to states in the safe set C. Comparing this expression with the bound
in (16), there is an additional factor of 2. This corresponds to doubling the radius of the uncertainty
set, which occurs because it is necessary to consider the entire set X̂ (x) for each x.

We now draw an explicit connection between measurement model uncertainty and learning from
data. Recall that the error e(x) is implicitly defined by the estimated q̂, so it can be viewed as
arising from imperfectly approximating the inverse map q:

e(x) = x− q̂(p(x)) = q(y)− q̂(y). (18)

Therefore, we treat ε(x) as a pointwise error bound on the learned map q̂ over the space of mea-
surements. In a supervised learning setting, this map arises from training data, which we denote
as S = {(yi, x̄i)}Ni=1. The recorded system outputs yi play the role of the independent variables,
while the corresponding recorded states x̄i play the role of dependent variables. We denote the
recorded states as x̄i to allow for the possibility that they are imperfect measurements of the state.
For example, the recorded values could be noisy according to some distribution D:

x̄i = xi + wi, wi
iid∼ D , (19)

for i = 1, . . . , N . This scenario corresponds to using a simple noisy sensor to calibrate a more
complex sensor by learning the inverse map q̂. Denote the true states as XS = {xi}Ni=1.

Our work is motivated by instances of control-from-pixels, where the system outputs y are camera
images [19, 20, 21]. Therefore, we consider maps q̂ which are non-parametric and thus highly data
dependent, like neural networks.1 Though necessary for guaranteeing safety, providing pointwise
bounds on errors as in (18) is often not the focus of machine learning analyses, which favor a mean-
error perspective. We point to this issue to highlight an area of future work, and rely here on a
simplified model. The following definition models training data-dependent errors:

Definition 4. A non-parametric error bound with parameters (L, σ) ∈ R2
+ and hyperparameter

γ ∈ R+ has the form:

‖e(x)‖2 ≤ Lγ +
σ√

#{xi ∈ XS | ‖x− xi‖ ≤ γ}
. (20)

In Appendix D, we relate this definition to a high probability bound for a particular class of non-
parametric regression models analysed in [24] for the noisy sensor setting described by (19). Com-
bining this definition with Theorem 3 yields a condition on the way that training data is collected.

Corollary 1. Consider the setting of Theorem 3 and suppose that q̂ is learned with a method that
satisfies the (L, σ) non-parametric error bound with hyperparameter γ. Further suppose that the
training data is collected from states XS such that for all x ∈ C,

#{xi ∈ XS | ‖x− xi‖2 ≤ γ} >
4σ2

(
max

{
1

LLgh
‖Lgh(x)‖2 ,

Lfh(x)+α(h(x))
(LLfh

+Lα◦h)

}
− 2Lγ

)2 . (21)

1While we suppose that q̂ is learned entirely from data, our results are equally applicable to learning the
residual errors of an existing perception component (see, e.g. surveyed methods in [31]).
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Figure 1. (Left) The Segway model used in simulation from the perspective of the fixed virtual camera used
to estimate its state. (Right) Simulation results for worst-case measurement model uncertainty of ε = 0.2
subtracted from the true pitch angle θy when measured. A state trajectory generated using the the Standard
CBF Filter (red) and the MR-OP Filter (blue) are shown as projections onto their pitch angle and pitch rate
components. The safe set is plotted in green. Given the same initial condition, the MR-OP filter ensured safety
of the trajectory whereas the Standard CBF Filter did not.

Then h is a valid MR-CBF satisfying the conditions of Theorem 2.

The statement above characterizes a density condition for data used to calibrate complex sensors.
To ensure the feasibility of the MR-CBF procedure, training data should be sampled non-uniformly
according to the right hand side of (21). Future work will seek to connect this sampling scheme with
dynamically feasible trajectory planning targeted towards data density.

5 Simulation Results

In this section we present simulation results using MR-CBFs and data-driven learning models on a
simulated robotic Segway platform.

The Segway can be seen in Figure 1, and is modeled with system dynamics derived using the un-
constrained Euler-Lagrange Equations. The system is constrained to planar motion by providing
identical input torques about both wheels. The resulting degrees of freedom are the Segway’s hori-
zontal position r, horizontal velocity ṙ, pitch angle θy , and pitch rate θ̇y . The nominal controller kd
is a simple proportional-derivative (PD) controller as in [7]. The simulation was written in a Robot
Operating System (ROS) based environment using a mixture of C++ and Python to mimic the code
structure of the existing hardware platform [28].2

The safe set for the simulation was defined as C = {x ∈ R7 : h1(x) ≥ 0, h2(x) ≥ 0} with:

h1 = −θ̇y + αe(c− θy + θ?y) h2 = θ̇y + αe(c+ θy − θ?y) (22)

where c ∈ R++, αe ∈ R++, and θ?y is the pitch angle at equilibrium. The MR-OP Filter constraint
in (MR-OP) was applied simultaneously to both safety functions (22) and was then implemented
using the ECOS Second Order Cone Problem solver [32]. The Lipschitz constants in this constraint
were estimated by sampling LLfh, LLgh and α ◦ h on a set of gridded values around the system’s
equilibrium point by taking the maximum of the slopes between any two adjacent grid points. As
a baseline comparison, a CBF-QP Filter (CBF-QP) was implemented and applied using both safety
functions (22). We considered the two following testing scenarios:

Worst-Case Synthetic Measurement Model Uncertainty: In this testing scenario we assumed
that direct measurements of the pitch angle θy were offset by a constant factor of ε > 0, such that
θ̂y = θy − ε. Implementing the MR-OP Filter for ε > 0 ensures safety for this worst-case error of
up to ε. The result of this type of worst-case measurement model uncertainty in the Segway system
with a standard CBF-QP Filter and an MR-OP Filter can be seen in Figure 1.

2The full simulation code can be found at https://github.com/rkcosner/cyberpod_sim_ros.git
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Figure 2. Simulation results demonstrating the ability of the MR-OP Filter to mitigate the impact of imperfect
learned perception models on safety. (Left) The state trajectory generated using the Standard CBF Filter (red)
and MR-OP Filter (blue) are shown as projections onto their pitch angle and pitch rate components. Given the
same initial condition, the MR-OP Filter generated a safe trajectory whereas the Standard CBF-QP Filter did
not. The state estimates for each trajectory had a maximum error of 0.183 and 0.201 respectively. (Right) The
Boolean composition, hb = min{he1, he2} = he1 ∧ he2 as defined in [34], is plotted for the CBF-QP Filter
and MR-OP Filter trajectories for the true and estimated states, x (solid line) and x̂ (dotted line). The safety
violation of the Standard CBF-QP Filter can be seen where hb(x) crosses 0.

Data-Driven Sensor Calibration: In this scenario a more realistic form of measurement model
uncertainty is introduced through the use of a learned model to estimate the position r and pitch angle
θy from camera images. In simulation, a virtual camera and lighting source were implemented to
provide a 15 Hz video feed with a fixed perspective, an example of which can be seen in Figure
1. The labels for this supervised-learning problem were noisy measurements of the position and
pitch angle generated by the system’s inertial measurement unit, corrupted by Gaussian noise with
standard deviation 0.1. We use sklearn’s Kernel Ridge Regression with radial basis functions
[33] trained using a set of 800 labelled images associated with a gridded range of position and pitch
angle values to ensure dense coverage. The hyperparameter values α = 0, γ = 5.4 × 10−8 were
selected to minimize the average error on an 80% - 20% random train-test split.

The result of the learning-induced errors in the Segway system with a standard CBF Filter and an
MR-OP Filter with ε = 0.2 can be seen in Figure 2. In the left panel, the safe set C is shaded
according to the upper bound on error ε̄(x) under which feasibility is guaranteed. As the errors in
the learned map do not exceed this value empirically, the set C is rendered invariant. The expression
for ε̄(x) in this experimental scenario is presented in a result analogous to Theorem 3 in Appendix E,
along with an empirical validation of learned model errors.

6 Conclusion

In conclusion, we presented the notion of a Measurement-Robust Control Barrier Function as a tool
for ensuring safety in the presence of error in the model relating measurements to state estimates.
The resulting safety condition required by a MR-CBF can be directly incorporated into an optimiza-
tion based controller as a second order cone constraint, preserving the convexity of typical CBF
based controllers. We explore how worst case error in learned measurement models can be quanti-
fied in terms of data density, and demonstrate how learning-based perception models can be trained
on noisy state data and incorporated with MR-CBFs to achieve safe, perception based control.

Future work will seek to explore the concepts in this paper from both a practical and a theoreti-
cal standpoint. From a practical perspective, we will demonstrate the feasibility of MR-CBFs and
perception-based control on unstable systems such as the Segway in real world experiments. From a
theoretical perspective, we will explore the impact of noise, targeted data acquisition through trajec-
tory generation, Lipschitz properties of the resulting optimization based controllers, and strategies
for non-invertible observation models such as dynamic estimators (Kalman filters).
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A Measurement-Robust Control Barrier Function Safety Proof

In this appendix we provide a proof of Theorem 2 relating MR-CBFs to safety.

Recall that Theorem 2 is given by:
Theorem (2). Let a set C ⊂ Rn be defined as the 0-superlevel set of a continuously differentiable
function h : Rn → R. Assume the functions Lfh : Rn → R, Lgh : Rn → Rm, and α ◦
h : Rn → R are Lipschitz continuous on C with Lipschitz coefficients LLfh, LLgh, and Lα◦h,
respectively. Further assume there exists a locally Lipschitz function ε : Rk → R+, such that
maxe∈E(y) ‖e‖2 ≤ ε(y) for all y ∈ p(C). If h is an MR-CBF for (1) on C with parameter function
(ε(y)(LLfh + Lα◦h), ε(y)LLgh), then any locally Lipschitz continuous controller k : Rk × Rn →
Rm, such that k(y, x̂) ∈ Kmr-cbf(y, x̂) for all (y, x̂) ∈ v̂(C), renders the system (2) safe with respect
to the set C.

Proof of Theorem 2. Define the function c : Rn × Rm → R as

c(x,u) =
∂h

∂x
(x)

(
f(x) + g(x)u

)
+ α(h(x)),

= Lfh(x) + Lgh(x)u + α(h(x)).

This proof will follow from Theorem 1, in that for any x ∈ C, with (y, x̂) = v̂(x), we will show:

c(x,k(y, x̂)) ≥ 0. (23)

To show that (23) is true, consider a measurement-state estimate pair (y, x̂) ∈ v̂(C). A sufficient
condition for (23) to hold is given by:

inf
x∈X (y)

c(x,k(y, x̂)) ≥ 0 .

Recalling that we define x̂ = x + e(x), we have:

inf
x∈X (y)

c(x,k(y, x̂)) = inf
e∈E(y)

c(x̂− e,k(y, x̂)),

= c(x̂,k(y, x̂)) + inf
e∈E(y)

c(x̂− e,k(y, x̂))− c(x̂,k(y, x̂)),

≥ c(x̂,k(y, x̂))− sup
e∈E(y)

|c(x̂− e,k(y, x̂))− c(x̂,k(y, x̂))|.

The assumption on Lipschitz continuity of Lfh, Lgh, and α ◦ h enables the following bound:

|c(x′,u)− c(x,u)| = |Lfh(x′)− Lfh(x) + Lgh(x′)u− Lgh(x)u + α(h(x′))− α(h(x))|,
≤ |Lfh(x′)− Lfh(x)|+ |Lgh(x′)u− Lgh(x)u|+ |α(h(x′))− α(h(x))|,
≤ LLfh‖x′ − x‖2 + ‖Lgh(x′)− Lgh(x)‖2‖u‖2 + Lα◦h‖x′ − x‖2,
≤ (LLfh + LLgh‖u‖2 + Lα◦h)‖x′ − x‖2.

Therefore, using the definition of ε(y) we have:

sup
e∈E(y)

|c(x̂− e,k(y, x̂))− c(x̂,k(y, x̂))| ≤ sup
e∈E(y)

(LLfh + LLgh‖k(y, x̂)‖2 + Lα◦h)‖e‖2,

≤ (LLfh + LLgh‖k(y, x̂)‖2 + Lα◦h)ε(y).

Thus:

inf
x∈X (y)

c(x,k(y, x̂)) ≥ c(x̂,k(y, x̂))− (LLfh + LLgh‖k(y, x̂)‖2 + Lα◦h)ε(y).

By the MR-CBF condition and the design of k we have that:

c(x̂,k(y, x̂))− ε(y)(LLfh + Lα◦h)− ε(y)LLgh‖k(y, x̂)‖2 ≥ 0,

implying the condition (23).
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B MR-OP Second Order Cone Conversion

In this appendix we show how the optimization problem specified by (MR-OP) can be written in the
standard form for a Second-Order Cone Program. The MR-OP Filter is given by:

k(y, x̂) = argmin
u∈Rm

1

2
‖u− kd(x̂)‖22 (MR-OP)

s.t. Lfh(x̂)− (LLfh + Lα◦h)ε(y) + Lgh(x̂)u− LLghε(y)‖u‖2 ≥ −α(h(x̂)).

First, the constant term can be removed from the cost such that it becomes: 1
2‖u‖22 − kd(x̂)>u.

Additionally, the constraint can be written in terms of a second order cone:

q =

[
Lgh(x̂)

LLghε(y)Im

]
u +

[
α(h(x̂)) + Lfh(x̂)− (LLfh + Lα◦h)ε(y)

0m

]
, q ∈ Qm+1,

whereQm+1 , {(q0,q1) ∈ R×Rm | q0 ≥ ‖q1‖2} is the second-order cone in Rm+1. Furthermore,
by adding the decision variable t ∈ R, the quadratic cost function can be converted to an equivalent
linear cost, t − kd(x̂)Tu, with a rotated second order cone constraint, ‖u‖22 ≤ 2t, that can be
converted to a standard second order cone constraint via a rotation matrix R ∈ R(m+2)×(m+2) [35].
Thus the additional constraint can be written as:

r = R
[
t 1 u>

]>
, r ∈ Qm+2.

Combining the two second order cone constraints, the problem can be written as:

k(y, x̂) = argmin
(u,t,s)∈R3m+4

[
1 0 −kd(x̂)>

] [
t 1 u>

]>

s.t. G(y, x̂)

[
t
1
u

]
+ s = h(y, x̂),

s ∈ Qm+2 ×Qm+1,

where:

G(y, x̂) = −
[
R1 0 R3:m+2

0 0 Lgh(x̂)
0m 0m LLghε(y)Im

]
,

h(y, x̂) =

[
R2

α(h(x̂)) + Lfh(x̂)− (LLfh + Lα◦h)ε(y)
0m

]
.

Here Ri represents the ith column of R, and R3:m+2 represents the columns 3 through m+ 2. This
equivalent formulation of (MR-OP) is in standard Second-Order Cone Program form as in [32].

C R-MR-OP Lipschitz Continuity Proof

In this appendix we show that the controller (R-MR-OP) is locally Lipschitz continuous in terms of
the true state x. Recall this controller is given by:

k(y, x̂) = argmin
(u,δ)∈Rm×R

1

2
‖u− kd(x̂)‖22 + pδ2 (R-MR-OP)

s.t. Lfh(x̂)− (LLfh + Lα◦h)ε(y) + Lgh(x̂)u− LLghε(y)‖u‖2 ≥ −α(h(x̂))− δ.
where y = p(x) and q̂(p(x)), with p and q̂ locally Lipschitz continuous. Thus if we prove that
k is locally Lipschitz with respects to its arguments, the composition of k with the measurement
functions will be locally Lipschitz. We also note that this optimization is always feasible, with a
unique minimizer as it is convex.
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The constraint in this optimization problem can be restated as a conic constraint:

k(y, x̂) = argmin
(u,δ)∈Rm×R

1

2
‖u− kd(x̂)‖22 + pδ2 (R-MR-OP)

s.t.

[
Lgh(x̂)u + δ + α(h(x̂)) + Lfh(x̂)− (LLfh + Lα◦h)ε(y)

LLghε(y)u

]
∈ Qm+1.

To prove local Lipschitz continuity of this controller, we will make use of Theorem 4 in [30], stated
below. To draw parallels with the notation of this work, we define the following:

w , (u, δ) ∈ Rm+1, (24)

C(y,x̂)(w) ,
1

2
‖u− kd(x̂)‖22 + pδ2, (25)

G(y,x̂)(w) ,

[
Lgh(x̂)u + δ + α(h(x̂)) + Lfh(x̂)− (LLfh + Lα◦h)ε(y),

LLghε(y)u

]
(26)

The optimization problem can then be written as:

k(y, x̂) = argmin
w∈Rm+1

C(y,x̂)(w) (27)

s.t. G(y,x̂)(w) ∈ Qm+1.

We note that G(y,x̂) : Rm+1 → Rm+1, with Rm+1 a Banach space, and that Qm+1 ⊂ Rm+1 is a
closed, convex cone with its vertex at the origin. We further have that C(y,x̂) and G(y,x̂) are twice
differentiable with respect to w, and these derivatives are locally Lipschitz continuous with respect
to (y, x̂) by local Lipschitz continuity of kd, Lfh, Lgh, α ◦ h, and ε.

The H(y,x̂) denote the Lagrangian:

H(y,x̂)(w,λ) = C(y,x̂)(w)− 〈λ, G(y,x̂)(w)〉, (28)

where λ ∈ Rm. The first-order necessary conditions associated with a solution (w?
(y,x̂),λ

?
(y,x̂)) to

(27) can be expressed as:

∂H(y,x̂)

∂w
(w?

(y,x̂),λ
?
(y,x̂)) = 0, (29)

〈λ?(y,x̂), G(y,x̂)(w
?
(y,x̂))〉 = 0, (30)

G(y,x̂)(w
?
(y,x̂)) ∈ Qm+1+ , (31)

where w?
(y,x̂) ∈ Rm + 1 and λ?(y,x̂) ∈ Qm+1. We also have that the following coercivity condition

is met: 〈
∂H(y,x̂)

∂w
(w?

(y,x̂),λ
?
(y,x̂))(v2 − v1),v2 − v1

〉
≥ ‖v2 − v1‖22, (32)

for any v1,v2 ∈ Rm+1 as:

∂H(y,x̂)

∂w
(w?

(y,x̂),λ
?
(y,x̂)) = Im+1, (33)

for all (y, x̂). Lastly, we note that:

∂G(y,x̂)

∂w
(w?

(y,x̂)) =

[
Lgh(x̂) 1

LLghε(y)Im 0m×1

]
. (34)

Under the assumption that ε(y) 6= 0 for all y ∈ p(C) (or that every measurement has some amount
of worst case error), we have the map in ∂G(y,x̂)

∂w (w?
(y,x̂)) is surjective from Rm+1 to Rm+1. Thus

we have that all of the conditions of the following theorem are met:

Theorem 4 (Lipschitz Continuity of SOCP [30]). If ∂G(y,x̂)

∂w (w?
(y,x̂)) is surjective and the coercivity

condition (32) holds, then there exists s > 0 such that (27) has a strict local minimizer w?
(y,x̂)

for each (y′, x̂′) ∈ Bs((y, x̂)), and both w?
(y,x̂), and the associated (unique) multiplier λ?(y,x̂)
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satisfying the first-order necessary condition (29), are Lipschitz continuous functions of (y′, x̂′) ∈
Bs((y, x̂)).

As (y, x̂) were arbitrary, and are locally Lipschitz continuous functions of the true state x, we have
that k is locally Lipschitz with respect to the state.

D Learning and Uncertainty Reduction Results

In this section, we provide a proof of Theorem 3, give a motivation for the definition of the nonpara-
metric error bound, and provide a proof of Corollary 1.

Recall that Theorem 3 is given by:
Theorem (3). Let C, h, LLfh, LLgh, Lα◦h, and ε be defined as in Theorem 2. Then h is a MR-CBF
for (1) on C with parameter function (ε(y)(LLfh + Lα◦h), ε(y)LLgh) if for all x ∈ C:

ε(x) < max

{‖Lgh(x)‖2
2LLgh

,
Lfh(x) + α(h(x))

2(LLfh + Lα◦h)

}
, ε̄(x) .

Proof. For completeness, we begin by proving the condition (16). The function h is a MR-CBF if

sup
u∈Rm

Lgh(x̂)u− b(y)‖u‖2 > −Lfh(x̂)− α(h(x̂)) + a(y). (35)

Considering the left hand side, and doing a change of variables with s = ‖u‖2 and v = u/‖u‖2,

sup
u∈Rm

Lgh(x̂)u− b(y)‖u‖2 = sup
s>0

s ·
(

max
‖v‖2=1

Lgh(x̂)v − b(y)

)
,

= sup
s>0

s · (‖Lgh(x̂)‖2 − b(y)) .

If ‖Lgh(x̂)‖2 − b(y) > 0, then s can be chosen arbitrarily large, implying (35) holds. If
‖Lgh(x̂)‖2 − b(y) ≤ 0, then (35) only holds if

0 > −Lfh(x̂)− α(h(x̂)) + a(y).

Substituting a(y) = ε(y)LLgh and b(y) = ε(y)(LLfh+Lα◦h) and combining these conditions, we
see that (35) is satisfied if and only if

ε(y) = ε(x) < max

{‖Lgh(x̂)‖2
LLgh

,
Lfh(x̂) + α(h(x̂))

(LLfh + Lα◦h)

}
.

It remains to find a sufficient condition in which the right hand side depends only on x. Notice that

‖Lgh(x)‖2 = ‖Lgh(x̂− e(x))‖2 ≤ ‖Lgh(x̂)‖2 + LLghε,

therefore,

‖Lgh(x)‖2 > 2LLghε(x) =⇒ ‖Lgh(x̂)‖2 > LLghε(x).

By a similar argument, we also have that

Lfh(x) + α(h(x)) > 2(LLfh + Lα◦h)ε(x) =⇒ Lfh(x̂) + α(h(x̂)) > (LLfh + Lα◦h)ε(x).

Combining these two expressions gives a sufficient condition depending only on x and yields the
desired result.

D.1 Motivation for Non-Parametric Error Bound

Consider the simple Nadarya-Watson non-parametric regressor defined from a set of training data
S = {(yi, x̄i)}Ni=1 as

q̂(y) =

N∑

i=1

1{ρ(yi,y) ≤ α}
sN (y)

· x̄i, sN (y) =

N∑

i=1

1{ρ(yi,y) ≤ α} , (36)
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where ρ : Rk × Rk → R+ is a metric with respect to which the functions p and q are smooth:

ρ(p(x),p(x′)) ≤ Lp‖x− x′‖2, ‖q(y)− q(y′)‖2 ≤ Lqρ(y,y′) . (37)

This regressor performs local averaging over training data to predict the underlying state as a func-
tion of the system output y.

Lemma 1 (Adapted from [24]). For a system satisfying (37) and a learned perception map of the
form (36) with noisy labels as in (19) with E[wi] = 0 and E[wiw

>
i ] = σ2

w, we have with probability
at least 1− δ that for any fixed y with sN (y) 6= 0,

‖q̂(y)− q(y)‖∞ ≤ αLq +
nσw√
sN (y)

√
n log

(
n
√
sN (y)/δ

)
. (38)

To see how this applies to the error bound presented in Definition 4, we first note that

sN (y) =

N∑

i=1

1{ρ(p(xi),p(x)) ≤ α},

≥
N∑

i=1

1{‖xi − x‖2 ≤ α
Lp
},

= #{xi ∈ XS | ‖x− xi‖ ≤ α
Lp
}.

Therefore, Lemma 1 implies a pointwise high probability bound on error of the form in Definition 4
with

L = LpLq, σ = nσw

√
n log(n

√
N/δ), γ = α

Lp
.

Extending this probabilistic result from pointwise to hold over a compact set is nontrivial. The sub-
tleties involved are handled more carefully in [24], and we focus only on this illustrative connection
here.

D.2 Proof of Corollary 1

This result follows by combining the expression (17) with the nonparametric error bound introduced
in Definition 4. Using this definition, we have that

ε(x) = sup
e∈E(y)

‖e‖2 ≤ Lγ +
σ√

#{xi ∈ XS | ‖x− xi‖ ≤ γ}
.

Combining this with the sufficient condition,

σ√
#{xi ∈ XS | ‖x− xi‖ ≤ γ}

< max

{‖Lgh(x)‖2
2LLgh

,
Lfh(x) + α(h(x))

2(LLfh + Lα◦h)

}
− Lγ .

The result follows by rearranging terms.

E Further Experimental Details

In this section, we provide additional plots related to the learned model and present a result analo-
gous to Theorem 3 specialized to the experimental setting.

An empirical validation of the learned model is presented in Figure 3, which displays the training
data, the model predictions of θy , and the errors over the validation set.

We now present a result analogous to Theorem 3 to derive an expression for ε̄(x) in the experimental
scenario. For control of the robotic Segway under planar motion, the input torques about both wheels
were constrained to be identical. Furthermore, the MR-OP Filter constraint in (MR-OP) was applied
simultaneously to both safety functions (22). Therefore, the MR-OP Filter requires the feasibility of
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Figure 3. Learned model results. (Left) Illustration of the training data, which was collected from a gridded
range of position r and pitch angle θy . (Middle) The estimated vs. actual pitch angles on a validation set.
(Right) The empirical model errors ε(x) measured on a validation set.

the following set of constraints, for u ∈ R:

u = u1,

Lfh1(x̂) + Lgh1(x̂)u− (LLfh1
+ Lα◦h1

)ε(y)− LLgh1
ε(y)‖u‖2 ≥ −α(h1(x̂)),

Lfh2(x̂) + Lgh2(x̂)u− (LLfh2
+ Lα◦h2

)ε(y)− LLgh2
ε(y)‖u‖2 ≥ −α(h2(x̂)).

Making use of the fact that ∂h1

∂x = −∂h2

∂x , we can simplify and rewrite these constraints as

Lgh1(x̂)1u− LLghε(y)
√

2|u| ≥ −α(h1(x̂))− Lfh1(x̂) + (LLfh + Lα◦h)ε(y),

−Lgh1(x̂)1u− LLghε(y)
√

2|u| ≥ −α(h2(x̂)) + Lfh1(x̂) + (LLfh + Lα◦h)ε(y).
(39)

Proposition 1. The set of constraints (39) will be feasible for all x ∈ C if for all x ∈ C:

ε(x) <
1

2
max

{
min

{
α(h1(x)) + Lfh1(x)

(LLfh + Lα◦h)
,
α(h2(x))− Lfh1(x)

(LLfh + Lα◦h)

}
,

min
{α(h1(x)) + Lfh1(x)

(LLfh + Lα◦h)
,

|Lgh1(x)1|(α(h1(x)) + α(h2(x)))

LLgh

√
2(α(h2(x))− α(h1(x))− 2Lfh1(x)) + 2(LLfh + Lα◦h)|Lgh1(x)1|

}
,

min
{α(h2(x))− Lfh1(x)

(LLfh + Lα◦h)
,

|Lgh1(x)1|(α(h1(x)) + α(h2(x)))

LLgh

√
2(α(h1(x))− α(h2(x)) + 2Lfh1(x)) + 2(LLfh + Lα◦h)|Lgh1(x)1|

}}
.

Proof. First, we adapt constraints in (39) to be in terms of the true state x rather than the estimated
x̂. By a smoothness argument,

Lgh1(x− e)1u− LLghε(x)
√

2|u| ≥ −α(h1(x− e))− Lfh1(x− e) + (LLfh + Lα◦h)ε(x)

⇐= Lgh1(x)1u− 2LLghε(x)
√

2|u| ≥ −α(h1(x))− Lfh1(x) + 2(LLfh + Lα◦h)ε(x) .

A similar argument holds for the second constraint. Therefore, to find a guarantee depending only
on x, we effectively double the radius of error to 2ε(x).

Then the result follows from Lemma 2, which applies to this problem with

ε = 2ε(x),

a = Lgh1(x)1,

b = LLgh

√
2,

d1 = α(h1(x)) + Lfh1(x),
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d2 = α(h2(x))− Lfh1(x),

L = (LLfh + Lα◦h).

Lemma 2. The following two constraints

au− bε|u| ≥ −d1 + Lε,

−au− bε|u| ≥ −d2 + Lε,

are simultaneously feasible for some u ∈ R if and only if

ε ≤ max

{
min

{
d1
L
,
d2
L

}
,min

{
d1
L
,
|a|(d1 + d2)

b(d2 − d1) + 2L|a|

}
,min

{
d2
L
,
|a|(d1 + d2)

b(d1 − d2) + 2L|a|

}}
.

Proof. It is equivalent to consider

−d1 + Lε ≤ max
u

au− bε|u|
s.t. − au− bε|u| ≥ −d2 + Lε.

First, notice that the first condition implies that u = 0 satisfies the expression.

Otherwise, consider the case that −d2 + Lε ≤ 0, and see that we will set u to have the same sign as
a. Then the optimization problem is solved by

(|a| − bε) −d2 + Lε

−(|a|+ bε)
= max
|u|

|u|(|a| − bε)

s.t. − (|a|+ bε)|u| ≥ −d2 + Lε.

This yields the third condition after some algebra:

(|a| − bε) −d2 + Lε

−(|a|+ bε)
≥ −d1 + Lε,

(|a| − bε)(d2 − Lε) ≥ (−d1 + Lε)(|a|+ bε),

|a|d2 − bεd2 − Lε|a|+ bLε2 ≥ −d1|a|+ Lε|a|+−d1bε+ Lbε2,

|a|(d2 + d1) ≥ (2L|a| − d1b+ d2b)ε.

Reversing the roles of d1 and d2 and setting u to have the opposite sign of a yields the second
condition.
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