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Abstract—Modern control systems must operate in increasingly
complex environments subject to safety constraints and input
limits, and are often implemented in a hierarchical fashion with
different controllers running at multiple time scales. Yet tra-
ditional constructive methods for nonlinear controller synthesis
typically “flatten” this hierarchy, focusing on a single time scale,
and thereby limited the ability to make rigorous guarantees on
constraint satisfaction that hold for the entire system. In this
work we seek to address the stabilization of constrained nonlinear
systems through a multi-rate control architecture. This is accom-
plished by iteratively planning continuous reference trajectories
for a nonlinear system using a linearized model and Model
Predictive Control (MPC), and tracking said trajectories using
the full-order nonlinear model and Control Lyapunov Functions
(CLFs). Connecting these two levels of control design in a way
that ensures constraint satisfaction is achieved through the use
of Bézier curves, which enable planning continuous trajectories
respecting constraints by planning a sequence of discrete points.
Our framework is encoded via convex optimization problems
which may be efficiently solved, as demonstrated in simulation.

I. INTRODUCTION

The study and design of nonlinear control systems has long
been framed through the lens of stabilization, often in an
optimal sense. This is coupled with the fact that one typically
considers a single model, implicitly representing a single time
scale. However in most modern engineering settings, espe-
cially in the context of autonomous and robotic systems, the
task of stabilization is complicated by the need to meet safety-
critical constraints on the system’s state while respecting
input limitations. To address this need, implementations often
utilize a hierarchical approach that spans multiple time-scales,
from the planning layer—which typically leverages discrete-
time models—to the real-time controller layer which often
considers continuous-time representations. Thus it is necessary
to develop efficient control synthesis techniques that provide
rigorous guarantees of stability, even in the presence of such
constraints, and across multiple time scales.

At the level of real-time control design, a rich catalog of
methods have been developed for stabilizing nonlinear systems
in the presence of unknown disturbances by utilizing under-
lying structural properties of the system [1]–[4]. In particular,
the tools of Control Lyapunov Functions (CLFs) [5], [6] and
Input-to-State Stability [7] have enabled the joint synthesis of
stabilizing controllers and Lyapunov certificates of stability
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Fig. 1. Overview of Multi-Rate Architecture, with discrete planning producing
reference trajectories at a mid-level and continuous controllers producing
invariant sets at a low-level.

in the presence of disturbances, including through convex
optimization [8]–[10]. These methods for stabilization yield
highly structured controllers, and modifying these designs
to accommodate state and input constraints may destroy the
stability properties guaranteed by the controller. This issue is
often circumnavigated theoretically by limiting the domain on
which stability is guaranteed, effectively ignoring constraints.

In contrast, Model Predictive Control (MPC) provides an
effective method for addressing constraints [11]–[13]. This is
achieved by directly incorporating constraints a into controller
that iteratively plans a finite sequence of states and inputs that
are related through a discrete model of the system dynamics
and satisfy required constraints. Although MPC has been suc-
cessfully demonstrated in several challenging control settings
[14]–[24], it is rarely implemented in real-time using the full-
order continuous time nonlinear dynamics while accounting
for unknown disturbances acting on the system. Thus, MPC
implementation for nonlinear systems usually lack strong the-
oretical guarantees on constraint satisfaction in the presence of
disturbances. This is because (i) it is typically difficult to find a
closed-form expression for the exact temporal discretization of
continuous time nonlinear dynamics [25], (ii) approximating
the exact discretization through numerical integration typically
yields a non-convex relationship between planned states and
inputs, and (iii) exactly propagating disturbances through
high-dimensional nonlinear dynamics is often computationally
intractable [26]. These challenges often preclude achieving the
computational efficiency needed for real-time implementation.

The difficulty in realizing MPC based controllers at a fast
enough rate to allow for real-time implementation is often
resolved by using an approximate model of the system dynam-
ics that is amenable to efficient planning, typically through
reduced-order models or via linearization and temporal dis-
cretization of the continuous time nonlinear system dynamics



[13], [22]–[24], [27]. The use of such approximations creates a
gap between the system which is being planned for and the ac-
tual evolution of the nonlinear system, requiring an additional
measure of robustness to ensure constraint satisfaction. This
robustness is often achieved by tightening the constraint sets
by the maximum deviation between the approximate model
and the continuous time nonlinear system dynamics [28]–[35].
Approximating worse-case deviations is typically done using
properties of the dynamics which may be difficult to compute,
such as Lipschitz constants for which over-approximations
yield conservativeness, or by solving computationally intensive
optimization programs. More recently, hierarchical control
frameworks have been proposed that plan with an approximate
model, but directly address nonlinear dynamics with a low-
level controller [36], [37]. However, this work does not address
if the low-level controller respects state and input constraints
as it follows the planned trajectory under disturbances.

In this work we propose a novel multi-rate control architec-
ture that unifies the planning capabilities of Model Predictive
Control with the ability to directly address nonlinear dynamics
provided by Control Lyapunov Functions. The fundamental
tool that allows our framework to explicitly address the rela-
tionship between a planner and controller operating at different
time scales are Bézier curves [38], [39]. By directly planning
over the control points that parameterize Bézier curves, we
capitalize on a critical convex hull property to ensure that
state and input constraints are met by the nonlinear system
evolving under an optimization-based CLF controller. While
Bézier curves have been used in motion planning, or to verify
constraint satisfaction after solving an MPC problem [40], this
is to the best of our knowledge the first result directly plan-
ning over Bézier control points in an MPC formulation, and
using the resulting continuous trajectories to ensure constraint
satisfaction for a nonlinear system with disturbances.

We begin in Section II by reviewing nonlinear dynamics,
and how structural properties can be used to synthesize CLFs
and optimization-based controllers for stabilizing a class of dy-
namically admissible reference trajectories. These controllers
yield a description of how accurately a reference trajectory
is tracked in the presence of disturbances that is amenable
to being incorporated into planning. Next, in Section III we
provide a review of Bézier curves, and show how they may
be used to synthesize reference trajectories for the disturbed
nonlinear system such that state constraints are satisfied.
Section IV uses the properties of Bézier curves in conjunction
with the structure of the low-level controller to formulate
constraints on Bézier control points that ensure the low-level
controller satisfies input constraints. In Section V we integrate
the preceding constructions into an MPC formulation that
plans over Bézier control points and synthesizes continuous
reference trajectories using a locally linearized and discretized
model while ensuring recursive feasibility. We conclude in
Section VI with simulation results. We note that proofs may
be found in the appendix.

II. LOW-LEVEL CONTROLLER DESIGN

In this section we review nonlinear dynamical systems
and discuss the design of nonlinear feedback controllers that
provide a measure of disturbance rejection. Importantly, these
controllers will yield a quantitative description of reference
trajectory tracking that is amenable to being directly incorpo-
rated into the synthesis of the reference trajectory itself.

Consider the nonlinear control-affine system:

ẋ =

[
0 I
0 0⊤

]
x+

[
0

f(x)

]
︸ ︷︷ ︸

f(x)

+

[
0

g(x)

]
︸ ︷︷ ︸
g(x)

u+w(t), (1)

with state x ∈ Rn, input u ∈ R, piecewise continuous1

disturbance signal w : R≥0 → Rn, and functions f : Rn → R
and g : Rn → R, assumed to be continuously differentiable
on Rn. Furthermore, we make the following assumption:

Assumption 1. The function f satisfies f(0) = 0 and the
function g satisfies g(x) ̸= 0 for all x ∈ Rn.

The first assumption takes the origin to be an unforced equilib-
rium point of the undisturbed system. The second assumption
amounts to the system (1) possessing a relative degree [1].
We note that while we consider a single-input, single-output
system, this is purely to simplify the presentation of our
contributions, and the subsequent developments may be easily
extended to the multiple-input, multiple-output setting under
an equivalent assumption of a vector relative degree.

Let t, t ∈ R≥0 with t < t, and let k : Rn × [t, t] → R be
a feedback controller that is locally Lipschitz continuous with
respect to its first argument2 and piecewise continuous with
respect to its second argument on Rn × [t, t]. This controller
yields the closed-loop system:

ẋ = f(x) + g(x)k(x, t) +w(t). (2)

As the functions f , g, and k are locally Lipschitz continuous
with respect to x and k is piecewise continuous with respect
to t, for any initial condition x0 ∈ Rn and any piecewise
continuous disturbance w : R≥0 → Rn, there exists an
interval I(t,x0,w) ≜ [t, t + δ(x0,w)) with δ(x0,w) ∈ R>0

such that the system (2) has a unique piecewise continuously
differentiable3 solution φ : I(t,x0,w)→ Rn satisfying:

φ̇(t) = f(φ(t)) + g(φ(t))k(φ(t), t) +w(t), (3)
φ(t) = x0, (4)

for almost all t ∈ I(t,x0,w) [3].
With a view towards controller design, the system (1) may

also be used to define a class of reference trajectories:

1This definition is taken as in [3], with piecewise continuity requiring the
existence of one-sided limits at points of discontinuity.

2This definition is taken as in [3], with local Lipschitz continuity holding
with a Lipschitz constant that is uniform in the function’s second argument.

3Piecewise continuous differentiability is taken to mean a continuous
function with a derivative defined on the open intervals of a finite partition
with one-sided limits.



Definition 1 (Dynamically Admissible Trajectory). A piece-
wise continuously differentiable function xd : [t, t]→ Rn is a
dynamically admissible trajectory for the system (1) if there
is a piecewise continuous function ud : [t, t]→ R such that:

ẋd(t) = f(xd(t)) + g(xd(t))ud(t), (5)

for almost all t ∈ [t, t].

Given a dynamically admissible trajectory xd : [t, t]→ Rn

for (1), let us denote: ẋd(t) =
[
ẋ1
d(t) · · · ẋn

d (t)
]⊤

, and
define a error function exd

: Rn × [t, t]→ Rn:

exd
(x, t) = x− xd(t), (6)

and its derivative ėxd
: Rn × [t, t]× R→ Rn as:

ėxd
(x, t, u) = f(x) + g(x)u+w(t)− ẋd(t). (7)

Denoting:
Fxd

(x, t) = f(x)− ẋn
d (t), (8)

the structure of the system (1) implies that:

ėxd
(x, t, u) =

fxd
(x,t)︷ ︸︸ ︷[

0 I
0 0⊤

]
exd

(x, t) +

[
0

Fxd
(x, t)

]
(9)

+ g(x)u+w(t).

This structure in conjunction with the assumption that g(x) ̸=
0 for any x ∈ Rn enables a controller kfbl

xd
: Rn × [t, t]→ R:

kfblxd
(x, t) = g(x)−1

(
−Fxd

(x, t)−K⊤exd
(x, t)

)
, (10)

where K ∈ Rn is selected to yield the relationship:

ėxd
(x, t, kfbl(x, t)) = Fexd

(x, t) +w(t), (11)

with F ∈ Rn×n a Hurwitz matrix. For any Q ∈ Sn≻0

(symmetric positive definite matrices) there exists a unique
P ∈ Sn≻0 solving the Continuous Time Lyapunov Equation:

F⊤P+PF = −Q. (12)

For a particular Q, the corresponding solution P may be used
to define the following function Vxd

: Rn × [t, t]→ R≥0:

Vxd
(x, t) = exd

(x, t)⊤Pexd
(x, t). (13)

Denoting ∇Vxd
(x, t) = 2exd

(x, t)⊤P, we have that:

λmin(P)∥exd(x, t)∥
2
2 ≤ Vxd(x, t) ≤ λmax(P)∥exd(x, t)∥

2
2, (14)

∇Vxd(x, t)(fxd(x, t) + g(x)kfbl
xd

(x, t)) (15)

≤ −λmin(Q)∥exd(x, t)∥
2
2,

for all x ∈ Rn and t ∈ [t, t]. Let γ = 4λmax(P)3/λmin(Q)2

and for a given disturbance signal w : R≥0 → Rn define
∥w∥∞ = supt≥0 ∥w(t)∥2. The preceding construction yields
the following result:

Lemma 1. Let w ∈ R≥0, and for t ∈ [t, t] define the set:

Ωxd
(t, w) = {x ∈ Rn | Vxd

(x, t) ≤ γw2}. (16)

Let the controller k : Rn × [t, t]→ R satisfy:

∇Vxd
(x, t)(fxd

(x, t) + g(x)k(x, t)) (17)

≤ −λmin(Q)∥exd
(x, t)∥22,

for almost all t ∈ [t, t] and all x ∈ Ωxd
(t, w). Then for

initial time t, any initial condition x0 ∈ Ωxd
(t, w), and any

disturbance signal w satisfying ∥w∥∞ ≤ w, we have that
I(t,x0,w) = [t, t), and φ(t) ∈ Ωxd

(t, w) for all t ∈ [t, t),
and limt→t φ(t) exists and satisfies limt→t φ(t) ∈ Ωxd

(t, w).

The preceding result follows by a standard input-to-state
stability argument [7]. For any t ∈ [t, t], the set Ωxd

(t, w)
captures how accurately the nonlinear closed-loop system (2)
tracks xd with disturbances. Importantly, for a given t ∈ [t, t]
the set Ωxd

(t, w) is convex – as we will see later, this property
will allow us to efficiently synthesize a dynamically admissible
trajectory xd while knowing how accurately it will be tracked
and ensuring state and input constraint satisfaction.

In contrast to cancelling the nonlinear dynamics to achieve
linear dynamics as in (11), which may be unnecessary and
inefficient [8], Control Lyapunov Functions (CLFs) provide an
alternative method for synthesizing stabilizing controllers via
convex optimization. In particular, we have that (15) implies:

inf
u∈R
∇Vxd

(x, t)(fxd
(x, t) + g(x)u) (18)

≤ −λmin(Q)∥exd
(x, t)∥22.

for all x ∈ Rn and t ∈ [t, t]. Define a feed-forward controller
kffxd

: Rn × [t, t]→ R as:

kff
xd
(x, t) = −g(x)−1Fxd

(x, t). (19)

This feed-forward controller is incorporated into the following
controller specified via a convex quadratic program (QP):

kclf
xd
(x, t) = argmin

u∈R

1

2
∥u− kff

xd
(x, t)∥22 (CLF-QP)

s.t. ∇Vxd
(x, t)(fxd

(x, t) + g(x)u) ≤ −λmin(Q)∥exd
(x, t)∥22.

Note that the constraint in this controller ensures that kclfxd

satisfies the condition in (17).

III. BÉZIER CURVES & STATE CONSTRAINTS

In this section we present the first main contribution of
this work by addressing how the properties of the low-
level tracking controller can be used to place requirements
on a dynamically admissible trajectory xd that ensure state
constraint satisfaction by the closed-loop nonlinear system (2)
evolving under controllers such as kfblxd

or kclfxd
.

We first make the following assumption regarding the state
constraints for the system:

Assumption 2. The state constraint set X ⊂ Rn is a compact,
convex polytope, with the existence of Lj ∈ Rn and ℓj ∈ R
for j = 1, . . . , q such that X = {x ∈ Rn | ∀j, L⊤

j x ≤ ℓj}.
Furthermore, we have that 0 ∈ Int(X ).

Given the above state constraints, it is not the case – even
for a dynamically admissible trajectory satisfying xd(t) ∈ X



for all t ∈ [t, t] – that the state will remain inside the
set X , as we may have that Ωxd

(t, w) ⊈ X for some
t ∈ [t, t]. To ensure these constraints are met by the closed-
loop system without directly modifying the low-level control
design, we will incorporate information about the low-level
controller when constructing xd. The core tool that will enable
incorporating this information is Bézier curves [38].

Let T ∈ R>0. A Bézier curve r : [0, T ] → R of order p is
defined as:

r(τ) = ξ⊤0 z(τ), (20)

where ξ0 =
[
ξ0,0 . . . ξ0,p

]⊤ ∈ Rp+1 is a vector with
elements consisting of the p + 1 control points, ξ0,i ∈ R,
of the curve and z : [0, T ]→ Rp+1 is a Bernstein polynomial
defined elementwise as:

zi(τ) =

(
p

i

)( τ

T

)i (
1− τ

T

)p−i

, i = 0, . . . , p. (21)

The curve r is smooth, and there exists a matrix4 H ∈
Rp+1×p+1 such that the jth derivative of r is given by:

r(j)(τ) =
1

T j
ξ⊤0 H

jz(τ) ≜ ξ⊤j z(τ). (22)

Consequently, r(j) : [0, T ] → R is a Bézier curve of
order p with the elements of ξj (which are uniquely and
linearly defined by ξ0) as control points. Define the function
r : [0, T ]→ Rn:

r(τ) =
[
r(τ) r(1)(τ) · · · r(n−1)(τ)

]⊤
. (23)

There exists a matrix4 D ∈ R2n×2n such that for any two
vectors x0,x1 ∈ Rn, the unique Bézier curve r of order 2n−1
satisfying r(0) = x0 and r(T ) = x1 with a vector of control
points ξ0 ∈ R2n is given by:

ξ⊤0 =
[
x⊤
0 x⊤

1

]
D−1. (24)

The following result shows how a sequence of points may
be used to construct a set of Bézier curves that constitute a
dynamically admissible trajectory for (1):

Lemma 2. Let N ∈ N, t ∈ R≥0, and define t = t+NT . For
k = 0, . . . , N , consider a collection of points {xk} with xk ∈
Rn and define tk ∈ R≥0 as tk = t+kT . For k = 0, . . . , N−1,
let rk : [0, T ] → R be a Bézier curve of order 2n − 1 with
control points (ξk)0 =

[
(ξk)0,0 . . . (ξk)0,2n−1

]⊤ ∈ R2n

given by:
(ξk)

⊤
0 =

[
x⊤
k x⊤

k+1

]
D−1. (25)

Defining the functions rk : [0, T ] → Rn as in (23), we have
that the function xd : [t, t]→ Rn defined as:

xd(t) = rk (t− tk) , t ∈ [tk, tk+1) ,

xd(t) = xN , (26)

is a dynamically admissible trajectory for the system (1).

4The matrices H and D are uniquely defined by the order of the Bézier
curve p and can be constructed as shown in appendix.

Fig. 2. A depiction of the proposed method, where the control points of the
Bézier curve are constraint tightened by the size of the robust invariant tube
coming from the low-level controller.

We note that the preceding result reduces planning of an
(infinite dimensional) continuous time trajectory to planning
a finite sequence of points. This aligns with planning dynam-
ically admissible trajectories online in a multi-rate approach.
While other classes of functions (such as general polynomials)
may similarly be used to construct dynamically admissible
trajectories for (1), the motivation for using Bézier curves
lies in the convex hull relationship between the curve rk
and the control points (ξk)0, . . . , (ξk)n−1. More precisely, for
i = 0, . . . , 2n− 1 denote:

(ζk)i ≜
[
(ξk)0,i . . . (ξk)n−1,i

]⊤ ∈ Rn. (27)

The points (ξk)j can be viewed as the control points in time
for the curve r

(j)
k , while (ζk)i reflects the control points for the

curve rk realized in state space. This enables the following:

Fact 1 ( [38] §4). We have that rk(τ) ∈ conv({(ζk)i}) for
all τ ∈ [0, T ].

We may immediately use this property to establish the
following result regarding state constraints:

Lemma 3. Define the convex, compact set E ⊆ Rn as:

E = {v ∈ Rn | vTPv ≤ γw2}. (28)

If (ζk)i ∈ X ⊖E for i = 0, . . . , 2n− 1 and k = 0, . . . , N − 1,
then we have that Ωxd

(t, w) ⊆ X for all t ∈ [t, t].

This result states that by constraining the Bézier curve
control points, we can ensure the evolution of the system
under the low-level controller satisfies state constraints. The
requirement that (ζk)i ∈ X ⊖E can be expressed as an affine
inequality constraint as in the following result:

Lemma 4. We have that for j = 1, . . . , q:

(ζk)i ∈ X ⊖ E ⇔ L⊤
j (ζk)i ≤ ℓj −

√
γw2L⊤

j P
−1Lj . (29)



IV. INPUT CONSTRAINTS

In this section, we present the second main contribution of
this work. We show how the structure of a low-level tracking
controller can be used to place requirements on a dynamically
admissible trajectory xd to ensure input constraint satisfaction.

We will make the following assumption regarding input
constraints for the system:

Assumption 3. The input constraint set U ⊂ R is given by
U = [−umax, umax] for some umax ∈ R>0.

Neither of the controllers kfblxd
or kclfxd

are necessarily re-
quired to take values in the set U . Thus, satisfying input
constraints may require violating the inequality constraint in
(17), potentially invalidating the claim that φ(t) ∈ Ωxd

(t, w)
for all t ∈ [t, t]. To address this limitation, knowledge of how
much control action is required by the controller to track the
reference trajectory under disturbances should be incorporated
when synthesizing xd.

To this end, we state the following definitions. For α, β ∈
R≥0, define the matrix Mα,β ∈ S2⪰0 and the functions Nα,β :
X → R2

≥0 and Γα,β : X → R≥0 as:

Mα,β = πPSD

([
2αβ β
β 0

])
, (30)

Nα,β(x) =

[
2αβe+ α|g(x)−1|+ β∥K∥2e

|g(x)−1|+ βe

]
, (31)

Γα,β(x) = e(βe+ |g(x)−1|)(α+ ∥K∥2), (32)

where πPSD : S2 → S2⪰0 denotes the projection from sym-
metric matrices to symmetric positive semidefinite matrices,
e ≜

√
γw2/λmin(P), and K is defined in (10). Given these

definitions, we state one of our main results:

Theorem 1. There exists constants α, β ∈ R≥0 such that
if α ≥ α, β ≥ β, and Ωxd

(t, w) ⊆ X for all t ∈ [t, t],
then for any collection of points {xk} with xk ∈ X for k =
0, . . . , N − 1, we have that for all t ∈ [tk, tk+1):

∥kfbl
xd
(x, t)∥2 ≤

1

2
σxd

(t)⊤Mα,βσxd
(t) (33)

+Nα,β(xk)
⊤σxd

(t) + Γα,β(xk),

for all x ∈ Ωxd
(t, w), where σxd

: [t, t]→ R2
≥0 is defined as:

σxd
(t) =

[
∥xd(t)− xk∥2
∥ẋn

d (t)− f(xk)∥2

]
, t ∈ [tk, tk+1). (34)

This result is motivated by the key observation that the upper
bound achieved in (33) is convex in the quantity σxd

(t) for
each t ∈ [t, t], such that the constraint:
1

2
σxd(t)

⊤Mα,βσxd(t) +Nα,β(xk)
⊤σxd(t) + Γα,β(xk) ≤ umax.

(35)

is a convex quadratic inequality constraint in the quantity
σxd

(t). Given that the function σxd
is defined by Bézier

control points, we seek to translate this constraint into one
on control points.

Remark 1. We note that the proof of Theorem 1 establishes
the existence of values of α and β through Lipschitz properties
of the dynamics. In practice, it may be difficult to compute
these values, and they may not necessarily be the minimum
values for which this result holds. Moreover, choosing very
large values of α and β may lead to conservative behavior, as
the constraint in (35) will constrain the dynamically admissible
trajectory xd to a small neighborhood of xk. These issues are
not unexpected, as the challenge of input constraint satisfaction
for general nonlinear systems is known to be quite difficult.
Instead, with this result we seek to highlight an important
monotonic structural property of the system that permits a
well-posed and practical approach for achieving input con-
straint satisfaction. In particular, one may begin with small
values of α and β and increase them until the closed-loop
nonlinear system meets input constraints. We will demonstrate
this type of procedure in Section VI.

Before relating Theorem 1 to the Bézier control points
defining xd, we state the following lemma:

Lemma 5. For any x ∈ Rn, we have that:

∥rk(τ)− x∥2 ≤ supi∥(ζk)i − x∥2, (36)

∥r(n)k (τ)− f(x)∥2 ≤ supi∥(ξk)n,i − f(x)∥2, (37)

for all τ ∈ [0, T ].

With this result, we now state one of our main results for
tractably enforcing input bounds:

Lemma 6. If given a collection of points {xk} with xk ∈ X
for k = 0, . . . , N − 1, there exists sk ∈ R2

≥0 such that:[
∥(ζk)i − xk∥2

∥(ξk)n,i − f(xk)∥2

]
≤ sk, (38)

1

2
s⊤k Mα,βsk +Nα,β(xk)

⊤sk + Γα,β(xk) ≤ umax, (39)

for i = 0, . . . , 2n − 1 and k = 0, . . . , N − 1, then we have
that the inequality (35) is satisfied with σxd

(t) defined as in
(34) for all t ∈ [t, t].

A consequence of this result is that for sufficiently high
values of α and β, meeting the conditions of Lemma 6 implies
∥kfblxd

(x, t)∥2 ≤ umax for all t ∈ [t, t] and x ∈ Ωxd
(t, w).

Moreover, the constraint (38) is a second-order cone constraint
and the constraint (39) is a convex quadratic constraint (which
may be reformulated as a second-order cone constraint, see the
appendix), and thus they may be incorporated into a convex
program for determining Bézier control points. Lastly, we state
the following corollary relating bounds on kfblxd

and kclfxd
:

Corollary 1. If the function kfblxd
is bounded as in (33) for all

t ∈ [tk, tk+1) and x ∈ Ωxd
(t, w), then we have that:

∥kclf
xd
(x, t)∥2 ≤

1

2
σxd

(t)⊤Mα,βσxd
(t) (40)

+Nα,β(xk)
⊤σxd

(t) + Γα,β(xk),

for all t ∈ [tk, tk+1) and all x ∈ Ωxd
(t, w).



V. MULTI-RATE CONTROL ARCHITECTURE

Utilizing the developments presented in the previous sec-
tions, we now construct a multi-rate control architecture which
iteratively produces dynamically admissible trajectories for
the system (1) and tracks them with the low-level controller
designed in Section II. Importantly, by achieving robustness
to disturbances with the low-level controller, the trajectory
planning algorithm can reason about a disturbance-free system.

A. Model Predictive Control

In this section we establish how to compute the collection
of points {xk} used to define xd in Lemma 2 while meeting
the desired constraints on the Bézier control points. Consider a
collection of points {xk} with xk ∈ X and {uk} with uk ∈ R
for k = 0, . . . N − 1. To incorporate information about the
system dynamics when synthesizing xd as in Lemma 2, we
will use linearizations of the system dynamics (1) around these
collections of points. This approximation of the dynamics will
provide constraints on sequential state points (and the corre-
sponding Bézier control points as defined by (25)) defining
xd. We neglect the disturbances w in this approximation as
the low-level controller rejects these disturbances and provides
a robust invariant set around xd. More precisely, consider a
linear, temporal discretization of (1):

xk+1 = A(xk, uk)xk +B(xk)uk +C(xk, uk), (41)

where A : X × R → Rn×n,B : X → Rn, and C : X ×
R→ Rn come from linearizing and taking the exact temporal
discretization5 (with sample period T ) of the dynamics in (1).
For notational simplicity let us define:

Ak ≜ A(xk, uk), Bk ≜ B(xk), Ck ≜ C(xk, uk). (42)

Given these, let us denote the state at a time t ∈ R≥0 by x(t).
Building upon the previous two sections, we propose a Finite
Time Optimal Control Problem (FTOCP):

min
uk,xk
sk,ξk

N−1∑
k=0

h(xk, uk) + J(xN ) (FTOCP)

s.t. xk+1 = Akxk +Bkuk +Ck, (43a)
x0 ∈ x(t)⊕ E , (43b)
xN = 0, (43c)

(ξk) =
[
x⊤
k x⊤

k+1

]
D−1, (43d)

(ζk)i ∈ X ⊖ E , ∀i ∈ I (43e)[
∥(ζk)i − xk∥2

∥(ξk)n,i − f(xk)∥2

]
≤ sk, ∀i ∈ I (43f)

1

2
s⊤k Mα,βsk +Nα,β(xk)

⊤sk

+ Γα,β(xk) ≤ umax, (43g)

where h : X ×R→ R≥0 is a convex stage cost, J : X → R≥0

is a convex terminal cost, and I = {0, . . . , 2n − 1}. The
constraint in (43a) requires that the sequence of discrete points

5See the appendix for a formula for these linearizations and discretizations.

defining xd satisfy a linear, discrete time approximation of
the system dynamics. The constraint in (43b) requires that
the beginning of xd is close to the current state x(t), such
that x(t) ∈ Ω(t, w) as required by Lemma 1. The constraint
in (43c) requires the end of xd to be placed at origin.
The constraints in (43d)-(43g) relate the discrete points xk

to Bézier control points, and consequently the continuous
trajectory xd tracked by the low-level controller. Note that as
in Fact 1, the coefficients (ξ)k and (ζk)i are linearly related for
i = 0, . . . , 2n−1, a constraint implicitly assumed in (FTOCP).
If h and J are positive definite quadratic functions, (FTOCP) is
a second-order cone program (SOCP), which can be efficiently
solved via standard solvers [41].

Remark 2. Note that we do not explicitly enforce input
constraints on the decision variables uk. Instead, constraints
are induced on these decision variables through the linear
dynamics constraint (43a) and the constraints on the Bézier
coefficients in (43d) and (43f)-(43g). Moreover, these con-
straints ensure that the low-level controller will satisfy input
constraints as desired.

B. The Multi-Rate Architecture

We now present the multi-rate architecture that integrates
the low-level controller design posed in Section II with the
preceding trajectory planner encoded in (FTOCP).

We first recall the role T plays in dynamically admissible
trajectories synthesized through Bézier curves as in Lemma 2,
as well as its role as a sampling period for the temporal dis-
cretization established in (41). Let us denote T = ∪∞i=0{iT}.
This set serves to index the discrete points in time (separated
by T ) at which a dynamically admissible trajectory for the
system will be replanned by solving the (FTOCP). The multi-
rate architecture is initialized at time t = 0 with collections
of points {xk|0} and {uk|0} with xk|0 ∈ X and uk|0 ∈ R
for k = 0, . . . , N − 1. Let us denote the linearized and
discretized dynamics computed around these collections by
{Link|0} = {(Ak|0,Bk|0,Ck|0)}.

Assumption 4. Given an initial condition x(0) ∈ X , (FTOCP)
is feasible using {Link|0}.

Algorithm 1 u = C-MPC(x, t)

1: if t ∈ T = ∪∞i=0{iT} then
2: Compute {Link|i} in (41) about {xk|i} and {uk|i};
3: Solve (FTOCP) with {Link|i};
4: if (FTOCP) is infeasible then
5: {Link|i} ← {Lin1|i−1, . . . ,LinN−1|i−1,LinO};
6: Solve (FTOCP) with {Link|i};
7: end if
8: {xk|i+1} ← {x∗

1|i, . . . ,x
∗
N−1|i,x

∗
N |i};

9: {uk|i+1} ← {u∗
1|i, . . . , u

∗
N−1|i, 0};

10: end if
11: Calculate xd|i from {x∗

k|i}, as in (25)–(26);
12: return u = kclf

xd|i(x, t);



We now describe our multi-rate framework as summarized
in Algorithm 1. As in Line 1, let t ∈ T such that t = iT
for some i ∈ Z. In Line 2, the linearized and discretized
dynamics are computed around the collections {xk|i} and
{uk|i}, and are denoted by {Link|i} = {(Ak|i,Bk|i,Ck|i)}.
In Line 3 these dynamics are used to solve the (FTOCP)
using the state at the current time, x(t), in (43b). If the
(FTOCP) is feasible, it returns collections of points {x∗

k|i}
with x∗

k|i ∈ X for k = 0, . . . , N and {u∗
k|i} with u∗

k|i ∈ R
for k = 0, . . . , N − 1. If (FTOCP) is infeasible, in Line
5 we set the linearized and discretized dynamics {Link|i}
to the previous linearization shifted by one and appending
the linearization and discretization around the origin, de-
noted LinO = (A(0, 0),B(0),C(0, 0)). In Line 6 we solve
(FTOCP) and similarly return collections of points {x∗

k|i} and
{u∗

k|i}. As we will show in Theorem 2, our assumption about
feasibility at time t = 0 will ensure that switching to this set of
linearizations will always ensure (FTOCP) is feasible. In Line
8–9 the collection {x∗

k|i} is shifted and the collection {u∗
k|i} is

shifted and appended with 0 to define collections {xk|i+1} and
{uk|i+1} used for linearization and discretization in the next
iteration. In Line 11 the collection {x∗

k|i} is then used to define
a dynamically admissible trajectory xd|i as in Lemma 2, which
yields a corresponding low-level controller kclf

xd|i that defines
the output of our algorithm. We may view our algorithm as
a time-varying controller that yields a closed-loop system (2).
Importantly, our algorithm ensures state and input constraints
are satisfied as the continuous time system evolves under this
controller, as stated in the following theorem:

Theorem 2. Suppose that α ≥ α and β ≥ β are such that
Γα,β(0) ≤ umax. Let (FTOCP) be defined with α and β, and
consider the closed-loop system (2) with a feedback controller
given by C-MPC in Algorithm 1 and a disturbance signal
satisfying ∥w∥∞ ≤ w. If 0 ∈ X ⊖E and (FTOCP) is feasible
at t0 = 0 with initial condition x(0) ∈ X , then C-MPC is well-
defined for all time, and the closed-loop system (2) satisfies
state and input constraints.

VI. SIMULATION

We consider the following nonlinear system in simulation:[
ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0

sin(x1) + x3
2

]
+

[
0
1

]
u+

[
w1(t)
w2(t)

]
.

The goal is to drive the system to the origin while satisfying
state and input constraints for all time. Fig. 3 demonstrates
that at different time scales, both with and without added dis-
turbances, using only either a low-level or mid-level controller
results in state and/or input violation, whereas the proposed
combined approach is able to satisfy both for all time. Fig. 4
shows the behavior of the system for increasing values of α
and β. As the parameter values increase, the planned MPC
points become closer to reduce deviation from the linearization
points, and in doing so the deviation of the low-level controller
from the planned input uk decreases as the system evolves
from x∗

k to x∗
k+1. Simulation code is provided at [42].

Fig. 3. Comparison of three control methods: only using a low level controller
(CLF), applying MPC with no low-level controller, and applying the proposed
C-MPC with a CLF at the low-level. In both scenarios, just using the low-
level or mid-level controller separately yields both state and input violation.

Fig. 4. The proposed C-MPC for increasing user parameter values α and
β. Notice that as the parameters increase, the planned MPC points become
spatially closer so as to reduce the linearization error, and in doing so the
deviation of the low-level controller from the planned control input decreases.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we have presented a multi-rate control archi-
tecture for nonlinear systems that utilizes MPC in conjunc-
tion with Bézier curves to iteratively plan continuous time
trajectories that are tracked using Control Lyapunov Function
based controllers. Our approach allows us to ensure that the
low-level controller satisfies state and input constraints as it
tracks the desired trajectory. We believe there are a number of
meaningful directions for future work. First, in the pursuit of
a truly multi-rate scheme, the low-level CLF control design
could be adapted to the sampled-data setting [43]. Next, our



work uses the origin as the terminal set, but developing
constructive approaches to synthesizing terminal sets using the
ideas in [44] could greatly improve the feasible domain of our
method. Lastly, we believe that the challenge of underactuation
and unstable zero-dynamics may be best approached through a
joint planning and low-level control mindset, and believe our
work serves as a first step in this direction [45].
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VIII. APPENDIX

A. Construction of H:

Let r be a Bézier curve of order p defined as in (20):

r(τ) =

p∑
i=0

ξizi(τ),

with control points given by the elements of ξ =[
ξ0 · · · ξp

]⊤
. The derivative of this curve is given by:

ṙ(τ) =

p∑
i=0

ξiżi(τ),

which we may equivalently express as [38, §13]:

ṙ(τ) =
1

T

p−1∑
i=0

p(ξi+1 − ξi)zi(τ) ≜
1

T

p−1∑
i=0

ϑizi(τ),

with ϑi ≜ p(ξi+1 − ξi) for i = 0, . . . , p− 1. We observe that
ṙ is a Bézier curve of order p − 1 with control points ϑi/T .
We may increase the order of ṙ by one (making it a Bézier
curve of order p) by the following transformation [38, §12]:

ṙ(τ) =
1

T

p∑
i=0

(
(p− i)ϑi + iϑi−1

p

)
zi(τ) ≜

1

T

p∑
i=0

ωizi(τ),

where ϑ−1 = ϑp ≜ 0. Thus ṙ is a Bézier curve of order p
with control points ωi/T . Noting that ωi is a linear function
of ξi−1, ξi, and ξi+1, we may rewrite ṙ as:

ṙ(τ) =
1

T
ξ⊤(S⊤R⊤)︸ ︷︷ ︸

H

z(τ),

where S ∈ Rp×p+1 and R ∈ Rp+1×p are defined by:

Sii = −p, Si,i+1 = p,

Rii =
p+ 1− i

p
, Ri+1,i =

i

p
,

for i = 1, . . . , p with all other entries zero [38]. The matrix
S corresponds to the differentiation of r, and the matrix
R corresponds to increasing the order of the curve by one.
Furthermore, we may reapply this transformation an arbitrary
number of times to produce higher-order derivatives:

r(j)(τ) =
1

T j
ξ⊤Hjz(τ).

B. Construction of D

Let us denote:

x0 =
[
x0,0 · · · x0,n−1

]⊤
,

x1 =
[
x1,0 · · · x1,n−1

]⊤
.

Consider the set of equality constraints on the boundary of the
Bézier curve:

r(j)(0) = x0,j , j = 0, . . . , n− 1

r(j)(T ) = x1,j , j = 0, . . . , n− 1.

Substituting in the definition of a Bézier curve results in:

ξ⊤j z(0) = x0,j , j = 0, . . . , n− 1

ξ⊤j z(T ) = x1,j , j = 0, . . . , n− 1.

As all of the control points are linear in ξ0, we can again
reformulate this as:

ξ⊤0
1

T j
Hjz(0) = x0,j , j = 0, . . . , n− 1

ξ⊤0
1

T j
Hjz(T ) = x1,j , j = 0, . . . , n− 1.

From this, we can construct a collection of linear equality
constraints:

ξ⊤0
[
D0 D1

]︸ ︷︷ ︸
D

=
[
x⊤
0 x⊤

1

]
,

with the matrices D0 ∈ R2n×n and D1 ∈ R2n×n defined as:

D0 =
[

1
T 0H

0z(0) · · · 1
Tn−1H

n−1z(0)
]
,

D1 =
[

1
T 0H

0z(T ) · · · 1
Tn−1H

n−1z(T )
]
.

C. Proof of Lemma 2:

Proof. Let k ∈ {0, . . . , N − 1}. As each function r
(j)
k ,

j = 0, . . . , n − 1, is a Bézier polynomial, the function rk
is continuously differentiable on the interval (0, T ) and the
respective one-sided limits of the derivative exist at 0 and T .
The definition of the Bézier control points in (25) implies that:

rk(T ) =

{
rk+1(0) if k ∈ {0, . . . , N − 2},
xN if k = N − 1.

Thus the function xd is continuous on [t, t], which with the
previous differentiability properties, implies it is piecewise
continuously differentiable on [t, t]. Next, observe that:

ẋd(t) = ṙk (t− tk) , t ∈ (tk, tk+1) ,

where ṙk : (0, T )→ Rn is given by:

ṙk(τ) =
[
r
(1)
k (τ) · · · r

(n)
k (τ)

]⊤
,

with r
(j)
k defined as in (22). This may be rewritten as:

ṙk(τ) =

[
0 I
0 0⊤

]
rk(τ) +

[
0

r
(n)
k (τ)

]
.

Thus we have that:

ẋd(t) =

[
0 I
0 0⊤

]
xd(t) +

[
0
1

]
r
(n)
k (t− tk),

for t ∈ (tk, tk+1). Defining the function ud : [t, t]→ R as:

ud(t) = g(xd(t))
−1(−f(xd(t)) + r

(n)
k (t− tk)),

for t ∈ [tk, tk+1), the continuity of f, g on Rn, the continuity
of r(n)k on [0, T ], and the fact g(x) ̸= 0 for all x ∈ Rn, implies
ud is piecewise continuous. Moreover, we have that:

ẋd(t) = f(xd(t)) + g(xd(t))ud(t),



for almost all t ∈ [t, t]. Thus xd is a dynamically admissible
trajectory for the system (1).

D. Proof of Lemma 3:

Proof. Because X and E are convex, their Minkowski dif-
ference, X ⊖ E , is also convex. As such, if (ζk)i ∈ X ⊖ E
for i = 0, . . . , 2n − 1, then conv({(ζk)i}) ⊆ X ⊖ E . As in
Fact 1, the convex hull property of Bèzier curves implies that
rk(τ) ∈ conv({(ζk)i}) for all τ ∈ [0, T ]. Thus we have that
rk(τ) ∈ X ⊖ E for all τ ∈ [0, T ], implying that for any time
t ∈ [t, t] we have that xd(t) as defined in (26) is contained in
X⊖E . Therefore, xd(t)⊕E = Ωxd

(t, w) ⊆ X , as desired.

E. Proof of Lemma 4:

Proof. First, suppose that (ζk)i ∈ X ⊖ E and let j ∈
{1, . . . , q}. We then have that:

L⊤
j ((ζk)i + v) ≤ ℓj , ∀v ∈ E .

Equivalently, we have that:

L⊤
j (ζk)i ≤ ℓj − sup

v∈E
L⊤
j v.

Noting that E = {v | v⊤Pv ≤ γw2} is a convex set as P is
positive definite, taking the Lagrangian yields:

sup
v∈E

L⊤
j v = inf

λ∈R+

sup
v∈Rn

L⊤
j v − λ(v⊤Pv − γw2),

≜ inf
λ∈R+

sup
v∈Rn

L(v, λ).

The stationarity conditions implies that:

∇vL(v∗, λ∗) = Lj − 2λ∗Pv∗ = 0 =⇒ v∗ =
1

2λ∗P
−1Lj .

Substituting this expression for v∗ into the Lagrangian yields
the dual problem:

sup
v∈E

L⊤
j v = inf

λ∈R+

1

4λ
L⊤
j P

−1Lj + λγw2.

The stationarity condition yields:

λ∗ =
1

2

√
L⊤
j P

−1Lj

γw2 ,

From this we arrive at:

sup
v∈E

L⊤
j v =

√
γw2L⊤

j P
−1Lj ,

whereby we then know that:

L⊤
j (ζk)i ≤ ℓj −

√
γw2L⊤

j P
−1Lj ,

as desired.
Second, let j ∈ {1, . . . , N}, and suppose that:

L⊤
j (ζk)i ≤ ℓj −

√
γw2L⊤

j P
−1Lj ,

Then for w ∈ E , we have that:

L⊤
j ((ζk)i +w) ≤ L⊤

j (ζk)i + sup
v∈E

L⊤
j v ≤ ℓj ,

following from our previous evaluation of the supremum. Thus
we have (ζk)i + w ∈ X , and since w and j were arbitrary,
we have (ζk)i ∈ X ⊖ E .

F. Proof of Theorem 1

Proof. Let k ∈ {0, . . . , N − 1}, let t ∈ [tk, tk+1) and let
x ∈ Ωxd

(t, w). For notational simplicity, let g† : Rn → R be
defined as g†(x) = g(x)−1. We first bound the feed-forward
input defined in (19) as follows:

∥kff
xd
(x, t)∥2 =

∥∥g†(x)Fxd
(x, t)

∥∥
2
,

≤
∥∥g†(x)∥∥

2
∥f(x)− ẋn

d (t)∥2 .

with Fxd
defined in (8). Given this, we have that:

∥kfbl
xd
(x, t)∥2 ≤ ∥kfbl

xd
(x, t)− kff

xd
(x, t)∥2 + ∥kff

xd
(x, t)∥2, (44)

≤ ∥g†(x)K⊤exd
(x, t)∥2 + ∥kff

xd
(x, t)∥2,

≤
∥∥g†(x)∥∥

2
(∥K∥2e+ ∥f(x)− ẋn

d (t)∥2) .

As the set X is compact, we have that f and g† are Lipschitz
continuous on X (as g is Lipschitz continuous and non-zero)
with Lipschitz constants Lf , Lg† ∈ R≥0, respectively. We
continue by observing that:

∥g†(x)∥2 ≤ ∥g†(x)− g†(xd(t))∥2 + ∥g†(xd(t))− g†(xk)∥2
+ ∥g†(xk)∥2,

≤ Lg†(∥exd
(x, t)∥2 + ∥xd(t)− xk∥2) + ∥g†(xk)∥2,

≤ Lg†(e+ ∥xd(t)− xk∥2) + ∥g†(xk)∥2.

Similarly, we have that:

∥f(x)− ẋn
d (t))∥2 ≤ Lf (e+ ∥xd(t)− xk∥2)

+ ∥f(xk)− ẋn
d (t))∥2.

The previous bounds allow us to construct a matrix M ∈ S2
and functions N : Rn → R2

≥0, and Γ : Rn → R≥0 defined as:

M =

[
2Lg†Lf Lg†

Lg† 0

]
,

N(xk) =

[
2Lg†Lfe+ Lf∥g†(xk)∥2 + Lg†∥K∥2e

∥g†(xk)∥2 + Lg†e

]
,

Γ(xk) = e(Lg†e+ ∥g†(xk)∥2)(Lf + ∥K∥2),

such that:

∥kfbl
xd
(x, t)∥2 ≤

1

2
σxd

(t)⊤Mσxd
(t) +N(xk)

⊤σxd
(t) + Γ(xk).

where:

σxd
(t) =

[
∥xd(t)− xk∥2
∥ẋn

d (t)− f(xk)∥2

]
, t ∈ [tk, tk+1).

Let α = Lf and β = Lg† . We can then see that if both α ≥ α
and β ≥ β, then:

Nα,β(xk) ≥ N(xk),

where the inequality is element-wise, and:

Γα,β(xk) ≥ Γ(xk).



As the elements of N and Nα,β are non-negative, we have:

Nα,β(xk)
⊤v ≥ N(xk)

⊤v,

for any v ∈ R2
≥0. Given the definition of σxd

(with non-
negative elements by definition of a norm), we thus have:

∥kfbl
xd
(x, t)∥2 ≤

1

2
σxd

(t)⊤Mσxd
(t)

+Nα,β(xk)
⊤σxd

(t) + Γα,β(xk).

We next observe that if both α ≥ α and β ≥ β, then:

1

2
v⊤Mv = Lg†Lfv

2
1 + Lg†v1v2

≤ αβv21 + βv1v2 ≜
1

2
v⊤M̃α,βv,

for all v =
[
v1 v2

]⊤ ∈ R2
≥0, where:

M̃α,β =

[
2αβ β
β 0

]
.

It can be seen that the matrix M̃α,β will have both a positive
and a negative eigenvalue for any α, β ∈ R≥0, and thus using
M̃α,β directly in (35) will yield a non-convex constraint for an
optimization program. To resolve this, we will project M̃α,β

onto the positive semidefinite cone to get Mα,β , such that:

Mα,β ≜ πPSD(M̃α,β),= λ1(M̃α,β)v1(M̃α,β)v1(M̃α,β)
⊤,

where λ1(M̃α,β) is the positive eigenvalue of M̃α,β , and:

v1(M̃α,β) =
1√

1 + λ1(M̃α,β)2

[
λ1(M̃α,β)

1

]
, (45)

is the corresponding unit eigenvector. By construction, we have
that Mα,β ⪰ M̃α,β , and thus we may conclude that:

1

2
v⊤Mv ≤ 1

2
v⊤M̃α,βv ≤

1

2
v⊤Mα,βv,

for all v ∈ R2
≥0. Thus we can conclude that:

∥kfbl
xd
(x, t)∥2 ≤

1

2
σxd

(t)⊤Mα,βσxd
(t)

+Nα,β(xk)
⊤σxd

(t) + Γα,β(xk).

Remark 3. The projection of the matrix M̃α,β onto the positive
semidefinite cone is a relaxation of the problem in that it will
shrink the set of feasible dynamically admissible trajectories.
In doing so, it provides a tractable way for guaranteeing that
input bounds are met. Importantly, this is a type of “minimal"
relaxation as the projection onto the positive semidefinite cone
is the closest matrix that yields a convex inequality constraint.

G. Proof of Lemma 5:

Proof. Let x ∈ Rn. The convex hull property of Bézier curves
implies that for any τ ∈ [0, T ], we may write:

rk(τ) =

2n−1∑
i=0

λi(τ)(ζk)i,

where λi(τ) ≥ 0 and
∑2n−1

i=0 λi(τ) = 1. Thus we have that:

∥rk(τ)− x∥2 =

∥∥∥∥∥
2n−1∑
i=0

λi(τ) ((ζk)i − x)

∥∥∥∥∥
2

,

using the fact that
∑2n−1

i=0 λi(τ) = 1. Moving the norm inside
the sum, we have that:

∥rk(τ)− x∥2 ≤
2n−1∑
i=0

∥λi(τ) ((ζk)i − x)∥2 ,

=

2n−1∑
i=0

λi(τ) ∥(ζk)i − x∥2 ,

as λi(τ) ≥ 0. We may further conclude that:

∥rk(τ)− x∥2 ≤
2n−1∑
i=0

λi(τ) sup
i
∥(ζk)i − x∥2 ,

= sup
i
∥(ζk)i − x∥2 ,

as desired. To establish the second part, we begin by noting
that r(n) is a Bézier curve of order 2n− 1, such that:

∥r(n)(τ)− f(x)∥2 =

∥∥∥∥∥
2n−1∑
i=0

(ξk)n,izi(τ)− f(x)

∥∥∥∥∥ ,
Noting that:

2n−1∑
i=0

zi(τ) = 1

for all τ ∈ [0, T ] (see [39]), we have that:

∥r(n)(τ)− f(x)∥2 =

∥∥∥∥∥
2n−1∑
i=0

((ξk)n,i − f(x))zi(τ)

∥∥∥∥∥ ,
≤

2n−1∑
i=0

∥((ξk)n,i − f(x))zi(τ)∥,

≤
2n−1∑
i=0

|(ξk)n,i − f(x)||zi(τ)|,

Noting that zi(τ) ≥ 0 for all τ ∈ [0, T ] and i ∈ {0, . . . , 2n−
1}, we then have that:

∥r(n)(τ)− f(x)∥2 ≤
2n−1∑
i=0

|(ξk)n,i − f(x)|zi(τ),

≤
2n−1∑
i=0

sup
i
|(ξk)n,i − f(x)|zi(τ),

≤ sup
i
|(ξk)n,i − f(x)|

2n−1∑
i=0

zi(τ),

= sup
i
|(ξk)n,i − f(x)|,

yielding the desired result.



H. Proof of Lemma 6
Proof. Assume that the inequalities in (38) and (39) hold for
some k ∈ {0, . . . , N − 1}. From Lemma 5, we have that:[

∥rk(τ)− xk∥2
∥r(n)k (τ)− f(xk)∥2

]
≤ sk,

for all τ ∈ [0, T ], where the inequality is element-wise. Given
the definition of the dynamically admissible trajectory xd in
(26), we then have that:

σxd
(t) ≤ sk

for all t ∈ [tk, tk+1). As the elements of Mα,β are positive
(as the elements of v1(M̃α,β) in (45) are both positive), and
the elements of σxd

(t) and sk are non-negative, we have that:

σxd
(t)⊤Mα,βσxd

(t) ≤ s⊤k Mα,βsk.

Furthermore, as the elements of Nα,β(xk) are non-negative,
we have that:

Nα,β(xk)
⊤σxd

(t) ≤ Nα,β(xk)
⊤sk.

Therefore, we can conclude that:
1

2
σxd

(t)⊤Mα,βσxd
(t) +Nα,β(x̄k)

⊤σxd
(t) + Γα,β(x̄k)

≤ 1

2
s⊤k Mα,βsk +Nα,β(x̄k)

⊤sk + Γα,β(x̄k)

≤ umax,

as enforced via (39).

I. Reformulation to a SOCP
Consider a positive semidefinite matrix Mα,β ∈ S2⪰0. We

may take its Cholesky decomposition, yielding:

Mα,β = Lα,βL
⊤
α,β ,

for some Lα,β ∈ R2×2. Let sk ∈ R2. We have that:

1

2
s⊤k Mα,βsk +Nα,β(xk)sk + Γα,β(xk) ≤ umax, (46)

if and only if there exists a σk ∈ R such that:∥∥∥∥[L⊤
α,β 0

0 1

] [
sk
σk

]∥∥∥∥
2

≤ σk +
1

2
, (47)

and:
σk +

1

4
≤ −Nα,β(xk)

⊤sk−Γα,β + umax. (48)

To see the if direction, assume there exists a σk ∈ R such that
(47) and (48) hold. We then have that:∥∥∥∥[L⊤

α,β 0

0 1

] [
sk
σk

]∥∥∥∥2
2

≤ σ2
k + σk +

1

4
,

which may be rewritten as:

s⊤k Lα,βL
⊤
α,βsk + σ2

k ≤ σ2
k + σk +

1

4
.

Using the definition of Lα,β , we arrive at:

s⊤k Mα,βsk ≤ −Nα,β(xk)
⊤sk − Γα,β(xk) + umax,

and thus have:

s⊤k Mα,βsk +Nα,β(xk)
⊤sk + Γα,β(xk) ≤ umax

For the only if direction, suppose that (46) is satisfied, and let:

σk = −Nα,β(xk)
⊤sk−Γα,β + umax −

1

4
,

such that (48) is satisfied. Substituting this into (46) yields:

s⊤k Mα,βsk ≤ σk +
1

4
.

Adding σ2
k to each side and using the definition of Lα,β yields:

s⊤k Lα,βL
⊤
α,βsk + σ2

k ≤ σ2
k + σk +

1

4
.

This may be rewritten as:∥∥∥∥[L⊤
α,β 0

0 1

] [
sk
σk

]∥∥∥∥2
2

≤
(
σk +

1

2

)2

.

Taking the square root of each side yields (47) as desired.

J. Proof of Corollary 1

Proof. Let k ∈ {0, . . . , N −1}, let t ∈ [tk, tk+1), and let
x ∈ Ωxd

(t, w). From (15) we know that kfblxd
(x) is a feasible

solution to the optimization problem defining kclfxd
, and thus

we may conclude:

1

2
∥kclf

xd
(x, t)− kff

xd
(x, t)∥22 ≤

1

2
∥kfbl

xd
(x, t)− kff

xd
(x, t)∥22.

From this we have that:

∥kclf
xd
(x, t)− kff

xd
(x, t)∥2 + ∥kff

xd
(x, t)∥2

≤ ∥kfbl
xd
(x, t)− kff

xd
(x, t)∥2 + ∥kff

xd
(x, t)∥2.

From the triangle inequality, we have that:

∥kclf
xd
(x, t)∥2 ≤ ∥kclf

xd
(x, t)− kff

xd
(x, t)∥2 + ∥kff

xd
(x, t)∥2.

Using this to replace the left-hand side of the inequality in
(44), we may proceed as in the proof of Theorem 1 to arrive
at:

∥kclf
xd
(x, t)∥2 ≤

1

2
σxd

(t)⊤Mα,βσxd
(t)

+Nα,β(xk)
⊤σxd

(t) + Γα,β(xk).

K. Linearization and Discretization:

We can linearize the dynamics of (1) to generate a linear,
continuous time representation about the point (xk, uk) as:

Ac(xk, uk) =
∂f

∂x
(xk) +

∂g

∂x
(xk)uk,

Bc(xk) = g(xk),

Cc(xk, uk) = f(xk) + g(xk)uk −Ac(xk, uk)xk −Bc(xk)uk.



We can then employ exact temporal discretization over a time
interval T to obtain:

A(xk, uk) = eAc(xk,uk)T ,

B(xk) =

∫ T

0

eAc(xk,uk)(T−τ)Bc(xk)dτ,

C(xk, uk) =

∫ T

0

eAc(xk,uk)(T−τ)Cc(xk, uk)dτ.

L. Proof of Theorem 2

Proof. Let i ∈ Z≥0. Suppose that at time ti = iT and state
x(ti) ∈ X , we have that (FTOCP) is feasible using the col-
lections of points {xk|i} and {uk|i} for k = 0, . . . , N −1 and
the corresponding linearizations {Link|i}. Let {x∗

k|i} for k =
0, . . . , N and {u∗

k|i}, {(ξ
∗
k|i)}, and {s∗k|i} for k = 0, . . . , N−1

be the collection of points composing the solution to (FTOCP),
and let xd|i : [ti, ti+1] → X be the continuous reference
trajectory defined as in Lemma 2. Given that ∥w∥∞ ≤ w,
Lemma 1 implies that φ(t) ∈ Ω(t, w) for all t ∈ [ti, ti+1]. We
have from Lemma 3 that Ω(t, w) ⊆ X for all t ∈ [ti, ti+1],
implying that φ(t) ∈ X for all t ∈ [ti, ti+1]. Given this,
we may further conclude from Theorem 1, Corollary 1, and
Lemma 6 that:

∥kclf
xd
(φ(t), t)∥2 ≤ umax =⇒ kclf

xd
(φ(t), t) ∈ U .

for all t ∈ [ti, ti+1].
To see that our algorithm is recursively feasible (i.e, feasible

at time ti+1 given feasibility at time ti), it is sufficient for
us to show that (FTOCP) is feasible at the time ti+1 with
x(ti+1) = φ(ti+1) and linearizations:

{Link|i+1} = {Lin1|i, . . . ,LinN−1|i,LinO},

for k = 0, . . . , N − 1, i.e., those calculated at time ti shifted
by one index and appended with the linearization at the origin.
This reflects the case in which solving (FTOCP) with the
linearizations about the previous optimal solution is infeasible,
so it is sufficient to check feasibility only in this case.

To show that under such these conditions a feasible solution
for (FTOCP) is given by:

{x̂k|i+1} =
{
x∗
1|i, . . . ,x

∗
N |i,0

}
, k = 0, . . . , N,

{ûk|i+1} =
{
u∗
1|i, . . . , u

∗
N−1|i, 0

}
, k = 0, . . . , N − 1,

{ŝk|i+1} =
{
s∗1|i, . . . , s

∗
N−1|i,0

}
, k = 0, . . . , N − 1,

{(ξ̂k|i+1)} =
{
(ξ∗1|i), . . . , (ξ

∗
N−1|i),0

}
, k = 0, . . . , N − 1,

First, we observe that:

x∗
k+1|i = Ak|ix

∗
k|i +Bk|iu

∗
k|i +Ck|i (49)

for k = 1, . . . , N − 1 by the previous solution. Thus:

x̂k+1|i+1 = Ak|i+1x̂k|i+1 +Bk|i+1ûk|i+1 +Ck|i+1,

for k = 0, . . . , N − 2. Noting that x̂N−1|i+1 = x∗
N |i = 0 as

required by the previous solution, and the fact that x̂N |i+1 = 0

and ûN−1|i+1 = 0, and CN−1|i = C(0, 0) = 0 we have that:

x̂N |i+1 = AN−1|i+1x̂N−1|i+1 +BN−1|i+1ûN−1|i+1

+CN−1|i+1.

Thus we have:

x̂k+1|i+1 = Ak|i+1x̂k|i+1 +Bk|i+1ûk|i+1 +Ck|i+1,

k = 0, . . . , N − 1 as required in (43a).
Next, we observe that by Lemma 1, we must have that

φ(ti+1) ∈ Ωxd|i(ti+1, w), such that φ(ti+1) ∈ xd|i(ti+1) ⊕
E = x∗

1|i⊕E . Noting that if v ∈ E , we must have that −v ∈ E ,
and thus x∗

1|i ∈ φ(ti+1) ⊕ E . As x(ti+1) = φ(ti+1), we
have x̂k|i+1 = x∗

1|i ∈ x(ti+1) ⊕ E as required by (43b). As
x̂N |i+1 = 0, (43c) is satisfied.

By virtue of the previous solution, we can see that (43d)-
(43g) are satisfied for k = 0, . . . , N − 2 by our proposed
solution. We need only show they hold for k = N − 1.
As x̂N−1|i+1 = x̂N |i+1 = 0 and (ξ̂N−1|i+1) = 0,
we have that (43d) is satisfied. Furthermore, we have that
(ξ̂N−1|i+1) = 0 implies the corresponding (ζ̂N−1|i+1)j = 0
for j = 0, . . . , 2n−1. By assumption we have that 0 ∈ X ⊖E ,
and thus we have that (43e) is satisfied.

Lastly, we note that xN−1|i+1 used to define the lineariza-
tion LinN−1|i+1 is the origin, i.e., xN−1|i+1 = 0. Thus we
have that the left-hand side of (43f) is 0, and thus because
Γα,β(0) ≤ umax, we see that ŝN−1|i+1 = 0 satisfies (43f)
and (43g), such that our proposed solution is feasible.

Remark 4. Note that recomputing the linearizations about the
previous trajectory is not strictly necessary to ensure feasibility
– trajectories generated from any linearization of the system
will be feasible for a full-state feedback linearizeable system.
However, what is payed is performance – keeping the trajec-
tory close to its linearization will reduce the conservativeness
that the MPC program exhibits. As such, there is a conditional
statement in Algorithm 1: if a feasible trajectory about the new
linearizations can be found, use it, and if not, use the previous
linearizations as a contingency plan to ensure feasibility.
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