
For each iteration, the Unitree A1 robot was

commanded using a reduced-order model to

move across the room without prior

knowledge of the obstacle locations.

Obstacles were segmented visually and

then tracked using SLAM. CBFs were

generated for each perceived obstacle and

used to filter the nominal input.

Safety-Aware PBL was conducted for the 4

tunable parameters with:

1. 30 iterations in simulation,

2. 7 iterations on hardware in lab,

3. 3 iterations on hardware outdoors.

The Maximum A Posteriori (MAP) is:

Given a dataset of preferences and safety

ordinal labels, the underlying reward is

models as:
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Abstract Overview

We present a design paradigm that

tunes controller parameters to

achieve a user’s preferred safety-

performance trade-off without

requiring domain expertise. This is

done in a Safety-Aware manner using

Preference-Based Learning and

Control Barrier Functions.

Safety-Aware Preference-Based Learning

Robust Safety-Critical Control

Experimental Results 

Robustly-Safe Controllers often have bad Performance because they account for Worst-Case Scenarios.
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User Feedback Gaussian Process Modeling Selecting New Actions
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Safety Label Likelihood Model:

Preference Likelihood Model: 

Safety-Aware LineCoSpar

LineCoSpar[1] is 

modified to only 

sample actions which 

are expected to be safe. 

We model the posterior as the multivariate

Gaussian:

Tunable Robustified Controller: 

Tunable Parameters Provide Robustness to: 

Model Error [2] Measurement Error [3] Reduced-Order Modeling [4]

Matched Disturbance

True       vs. Measured
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