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Abstract— The increasing complexity of modern robotic sys-
tems and the environments they operate in necessitates the
formal consideration of safety in the presence of imperfect
measurements. In this paper we propose a rigorous framework
for safety-critical control of systems with erroneous state
estimates. We develop this framework by leveraging Control
Barrier Functions (CBFs) and unifying the method of Backup
Sets for synthesizing control invariant sets with robustness
requirements—the end result is the synthesis of Measurement-
Robust Control Barrier Functions (MR-CBFs). This provides
theoretical guarantees on safe behavior in the presence of imper-
fect measurements and improved robustness over standard CBF
approaches. We demonstrate the efficacy of this framework
both in simulation and experimentally on a Segway platform
using an onboard stereo-vision camera for state estimation.

I. INTRODUCTION

Safety is of utmost importance in many modern control
applications, including autonomous vehicles, medical and
industrial robotics [1]. The growing complexity of these sys-
tems demands that safety properties be rigorously encoded
in the controller design. Such systems are typically described
as safe if their state never leaves a prescribed safe set,
and Control Barrier Functions (CBFs) [2], [3] have become
increasingly popular [4], [5] as a tool for achieving safety.
In this paper, we focus on two challenges related to safety-
critical control realized via CBFs: finding admissible inputs
and making these inputs robust to uncertainty.

The first challenge is guaranteeing that a safe control input
is always available. If safe control actions exist—i.e., satisfy
input constraints—over the entire safe set, the set is called
control invariant [6]. Yet control invariance is not guaranteed
in general—safe actions may not exist for all points in
a given safe set. Therefore, identifying control invariant
sets is critically important for implementing safety-critical
controllers in robotic systems. Hamilton-Jacobi reachability
analysis can be performed to compute such sets [7], but is
intractable for high dimensional systems. Here we adapt the
method of Backup Sets introduced in [8] as a computationally
tractable way of achieving control invariance.
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Fig. 1. Visualization of desired Segway behavior. The Segway is driven from
left to right and must not cross the red line. The transparent blue images
represent the measured position whereas the opaque images represent the
true position. Traditional CBFs do not account for this uncertainty.

The second challenge is that controllers rely on state mea-
surements that are often imperfect or uncertain—especially
for dynamic robotic systems. This can cause unsafe behavior
if not accounted for in the control design and, as such,
has been addressed from multiple perspectives. The work
in [9], [10] considers robust CBF formulations with worst-
case disturbance bounds to achieve safety. Safety guarantees
in the presence of measurement noise are addressed from a
stochastic perspective in [11], [12]. Controllers robust to state
estimation errors were proposed for sampled-data-systems
via an interval-arithmetic condition in [13] and for contin-
uous systems via estimate-error bounding in [14]. In [14]
safety and robustness were enforced by Measurement-Robust
Control Barrier Functions (MR-CBFs). This approach was
inspired by vision-based control [15], [16], [17], where state
information is observed through a complex transformation.

This paper presents a safety-critical control framework that
allows for the synthesis of control invariant sets that are
robust to measurement uncertainty, all with a view toward
experimental realization. The main contributions of this work
are twofold. Firstly, we integrate the method of Backup Sets
for ensuring control invariance [8] with the framework of
MR-CBFs [14]. This leads to practically achievable safety
guarantees even in the presence of measurement uncertainty,
establishing measurement-robust safety-critical control. Sec-
ondly, we present the first experimental demonstration of
both MR-CBFs and the proposed method by controlling the
motion of a Segway using camera data. The experiments
validate the robust safety guarantees provided by our method.

II. PRELIMINARIES

First we provide a review of safety-critical control through
Control Barrier Functions (CBFs) and synthesis of control



invariant sets via the Backup Set method.

A. Control Barrier Functions

Consider the nonlinear control affine system given by:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm, (1)

where f : Rn → Rn and g : Rn → Rn×m are locally Lips-
chitz continuous. Given a locally Lipschitz continuous con-
troller k : Rn → Rm, the closed-loop dynamics are:

ẋ = fcl(x) = f(x) + g(x)k(x), (2)

where fcl : Rn → Rn is also locally Lipschitz continuous.
Therefore, for any initial condition x(0) = x0 ∈ Rn there
exists an interval I(x0) , [0, tmax) such that x(t) is the
unique solution to (2) for t ∈ I(x0) [18]. Throughout this
paper we assume I(x0) = [0,∞).

The notion of safety is formalized by defining a safe set
C ⊂ Rn in the state space that the system must remain within.
In particular, consider the set C as the 0-superlevel set of a
continuously differentiable function h : Rn → R:

C , {x ∈ Rn : h(x) ≥ 0},
∂C , {x ∈ Rn : h(x) = 0},

Int(C) , {x ∈ Rn : h(x) > 0}.
(3)

We assume that zero is a regular value of h and C is non-
empty and has no isolated points, that is, h(x) = 0 =⇒
∂h
∂x (x) 6= 0, Int(C) 6= ∅, and Int(C) = C. In this context,
safety is synonymous with the forward invariance of C:

Definition 1 (Forward Invariance and Safety). A set C ⊂ Rn
is forward invariant if for every x0 ∈ C, the solution to (2)
satisfies x(t) ∈ C for all t ≥ 0. The closed-loop system (2)
is safe with respect to set C if C is forward invariant.

We call a continuous function α : R→ R an extended
class-K∞ (K∞,e) if it is strictly monotonically increas-
ing and satisfies α(0) = 0, limr→−∞ α(r) = −∞, and
limr→∞ α(r) =∞. Control Barrier Functions (CBF) [2] can
be used to synthesize controllers which ensure the safety of
the closed-loop system (2) with respect to a given set C.

Definition 2 (Control Barrier Function (CBF)). Let C ⊂ Rn
be a safe set given by (3). The function h is a Control Barrier
Function (CBF) for (1) on C if there exists α ∈ K∞,e such
that for all x ∈ C:

sup
u∈Rm

ḣ(x,u) ,
∂h

∂x
(x)f(x)︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

u ≥ −α(h(x)),

(4)
where Lfh : Rn → R and Lgh : Rn → Rm are the Lie
derivatives of h with respect to f and g, respectively.

Intuitively, the CBF constraint (4) requires the system to
slow down as it approaches the boundary of the safe set
(the right-hand side of (4) increases to 0 as the value of h
approaches 0). A main result in [19], [20] relates CBFs to
the safety of the closed-loop system (2) with respect to C:

Theorem 1. Given a safe set C ⊂ Rn, if h is a CBF for
(1) on C, then any locally Lipschitz continuous controller
k : Rn → Rm satisfying

Lfh(x) + Lgh(x)k(x) ≥ −α(h(x)) (5)

for all x ∈ C, renders the system (2) safe w.r.t. C.

Given a nominal (but not necessarily safe) locally Lips-
chitz continuous controller kd : Rn → Rm and a CBF h, the
CBF-Quadratic Program (CBF-QP) [2] ensures safety:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)).

B. Generating Control Invariant Sets via Backup Sets

To guarantee that a safe control action exists, one needs to
ensure the existence of a function h satisfying the CBF con-
dition (4). For a given safe-set C, fulfilling this requirement
can be nontrivial and potentially impossible. To this end, we
restrict our focus to a set CI ⊆ C which is control invariant:

Definition 3 (Control Invariance). A set CI ⊆ C is control
invariant if there exists a controller k : Rn → Rm such that
CI is forward invariant with respect to the system (2).

While directly computing control invariant sets remains
challenging in general, we may define one implicitly via
a backup set [8]. Consider a desired safe set C ⊂ Rn,
which is not necessarily control invariant. Suppose there
exists a set CB ⊂ C, defined as the 0-superlevel set of a
continuously differentiable function hB : Rn → R, which is
known a priori to be control invariant and can be rendered
forward invariant by a known locally Lipschitz continuous
backup controller kB : Rn → Rm. We refer to CB as the
backup set. For simple backup controllers (such as linear
state feedback controllers designed for the linearization of a
system) it is possible to find analytical expressions for local
regions of attraction to serve as backup sets. Alternatively,
numerical tools such as Sums-of-Squares (SOS) may be used
to synthesize control invariant sets [21].

We extend the backup set to a larger control invariant set
CI ⊂ Rn, satisfying CB ⊆ CI ⊆ C, by considering the backup
trajectory over a finite and fixed time T ∈ R>0 as follows.
By assumption, for any x ∈ Rn there exists a unique solution
ϕ : [0, T ]→ Rn satisfying:

d

dτ
ϕ(τ) = f(ϕ(τ)) + g(ϕ(τ))kB(ϕ(τ)),

ϕ(0) = x.
(6)

The solution ϕ may be interpreted as the evolution of the
system over the interval [0, T ] from a state, x, under the
backup controller kB . In particular, the current state x(t)
may be used as initial condition in specifying ϕ. We denote
φkbτ (x) , ϕ(τ) for the initial condition x.

Using this notation, we may define the set CI ⊆ C as:

CI =


h(φkBτ (x)) ≥ 0,∀τ ∈ [0, T ]

x ∈ C and
hB(φkBT (x)) ≥ 0

 . (7)



The first inequality implies safety under the backup policy
(φkBτ (x) ∈ C for all τ ∈ [0, T ]), and the second inequal-
ity implies the backup trajectory reaches CB by time T
(φkBT (x) ∈ CB). The set CI is thus control invariant as there
exists at least one controller, kB , which renders it forward
invariant. While CI is not necessarily the largest control
invariant subset of C (see viability kernel, [6]), the backup
sets provide a computationally tractable method for finding
an under-approximation of the largest control invariant set.

For notational simplicity, we define the continuously dif-
ferentiable functions hτ : Rn → R and hB : Rn → R as:

hτ (x) , h(φkBτ (x)), hB(x) , hB(φkBT (x)). (8)

Given these definitions, the CBF condition (4) can then be
specified for the set CI at a point x ∈ CI as follows:

Lfhτ (x) + Lghτ (x)u ≥ −α(hτ (x)), ∀τ ∈ [0, T ],

LfhB(x) + LghB(x)u ≥ −α(hB(x)).
(9)

Any locally Lipschitz continuous controller that takes values
satisfying (9) for all x ∈ CI will keep the closed loop system
(2) safe with respect to CI ; see [22, p. 6].

We note that enforcing the first constraint in (9) is not
necessarily tractable as it must hold for all τ ∈ [0, T ]. To
resolve this, it can be reduced to a finite collection of
more conservative constraints through constraint tightening.
A controller which implements the finite number of tightened
constraints, and thus renders (2) safe with respect to CI , is
given by the Backup Set Quadratic Program (BS-QP):

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (BS-QP)

s.t. Lfhτj (x) + Lghτj (x)u ≥ −α(hτj (x)− µ),

LfhB(x) + LghB(x)u ≥ −α(hB(x)),

for all τj ∈ {0,∆t, . . . , T}, where ∆t ∈ R>0 is a time-step
such that T/∆t ∈ N and µ ∈ R>0 satisfies:

µ ≥ ∆t

2
Lh sup

x∈C
‖f(x) + g(x)kB(x)‖2, (10)

with Lh ∈ R>0 a Lipschitz constant for h on C [8, Thm. 1].

III. MEASUREMENT ROBUSTNESS

The guarantees endowed by the above controllers require
perfect knowledge of the state x, which is unattainable in
practice. In particular, the relationship between the state of
the system and the measurements, such as images or point
clouds, can be complex and not fully known [15], [16], [17].
In this section we revisit measurement-model uncertainty and
present our main result in the form of a measurement-robust
version of the BS-QP.

A. Measurement-Model Uncertainty

To achieve robustness, we consider a structured form
of measurement-model uncertainty that modifies the CBF
condition (4) [14]. We assume the state x is not directly
available, but rather a state-dependent sensor measurement:

y = p(x), (11)

where y ∈ Rk and p : Rn → Rk is locally Lipschitz contin-
uous. An estimate of the state, x̂ ∈ Rn, is reconstructed
from y (such as through measurement models or data-
driven methods [16], [17]). In particular, we assume the map
from measurements to state estimates is imperfect (does not
recover the true state exactly), and is given by the locally
Lipschitz continuous function q̂ : Rk → Rn as follows:

x̂ , q̂(y) = x + e(x), (12)

where the state error function e : Rn → Rn is unknown and
implicitly defined by q̂.

The error function e can often be characterized via
upper bounds on measurement-model uncertainty. In par-
ticular, we assume that while the state error e(x) is not
known for a given state x ∈ Rn, it is within a com-
pact error set E(y) specified by a set-valued function
E : Rk → P(Rn) (P denotes the power set), that is, we have
e(x) ∈ E(y) = E(p(x)). The error set can be conservatively
characterized via the function ε : Rk → R≥0 defined as:

ε(y) , max
e∈E(y)

‖e‖2. (13)

Since the controller only has access to the measurement
and the state estimate, systems with measurement-model
uncertainty evolve according to:

ẋ = f(x) + g(x)k(y, x̂). (14)

Qualitatively this uncertainty is similar to error in the dy-
namics model since the true values of f(x) and g(x) are
unknown to the controller. The error bound can be used to
synthesize controllers which render such systems provably
safe as follows [14]:

Theorem 2. Given a safe set C ⊂ Rn, assume that Lfh,
Lgh, and α ◦ h are Lipschitz continuous on C with Lipschitz
constants LLfh,LLgh, and Lα◦h ∈ R≥0, respectively. Define
the function ε : Rk → R≥0 as in (13), and define the func-
tions a, b : Rk → R≥0 as a(y) = (LLfh + Lα◦h)ε(y) and
b(y) = LLghε(y). If k : Rk × Rn → Rm is a Lipschitz
continuous controller satisfying:

Lfh(x̂) + Lgh(x̂)k(y, x̂)

− (a(y) + b(y)‖k(y, x̂)‖2) ≥ −α(h(x̂)) (15)

for all x ∈ C, with y = p(x) and x̂ = q̂(y), then the system
(14) is safe with respect to C.

A continuously differentiable function h : Rn → R for which
such a controller exists is termed a Measurement-Robust
Control Barrier Function (MR-CBF) [14]. As compared to
the original CBF constraint (4), the MR-CBF constraint
(15) adds additional terms incorporating bounds on the
measurement error that ensure that the system is safe with
respect to all possible states which could have generated the
measurement. The original CBF constraint is recovered in
the absence of measurement error, i.e. when ε(y) = 0.



Fig. 2. Simulation results for a measurement model of x̂ = x− 0.4 m and constant desired velocity of 1 m/s. (Left) An image of the simulated Segway
model. (Center) Trajectories generated using the BS-QP. Solid line represents the true state, dashed line shows the estimated state, and green region
indicates the safe set C. The true trajectory fails to be safe and exits the safe set at t = 3 s. (Right) Trajectories generated using the MR-BS-OP. An
additional robustness region is plotted in blue to indicate the set of of true states which the control input renders safe. Both the true and measured trajectories
are safe demonstrating the robustness of the MR-BS-OP when compared to the BS-QP.

B. Measurement-Robust Backup Set Optimization Program

In this section we present our main result in the form of a
safety-critical control paradigm that is robust to measurement
uncertainty. This is accomplished by unifying the Backup Set
method with MR-CBFs, using the MR-CBF condition (15)
the finite set of constraints imposed in the BS-QP become:

Lfhτj (x̂) + Lghτj (x̂)u

− (aτj (y) + bτj (y)‖u‖2) ≥ −α(hτj (x̂)− µ),

LfhB(x̂) + LghB(x̂)u

− (aB(y) + bB(y)‖u‖2) ≥ −α(hB(x̂)),

(16)

with parameter functions:

aτj (y) = (LLfhτj
+ LαLhτj

)ε(y), bτj (y) = LLghτj
ε(y),

aB(y) = (LLfhB
+ LαLhB )ε(y), bB(y) = LLghB

ε(y),

(17)

for all τj ∈ {0,∆t, . . . , T}, with ε(y) defined as in (13) and
L represents the Lipschitz constant of its subscripted function
on Rn. These constructions enable the following definition:

Definition 4 (Measurement-Robust Implicit Safe Set). The
set CI ⊆ C ⊆ Rn defined as in (7) is a Measurement-Robust
Implicit Safe Set (MRISS) for the error bound ε : Rk → R≥0

with parameter functions (a0, b0, . . . , a∆t , b∆t , aB , bB) :
Rk → R≥0 if:
• the functions {h0, h∆t

, . . . , hT , hB}, their Lie deriva-
tives, and α are Lipschitz continuous on CI ,

• the constant µ ∈ R≥0 satisfies (10),
• and for all x ∈ CI there exists u ∈ Rm satisfying (16).

Next, using this definition, we show that the safety of such
sets can be made robust to measurement model uncertainty.

Theorem 3. Given a MRISS CI , if k : Rk × Rn → Rm is
a Lipschitz continuous controller that satisfies (16) with
parameter functions (17) for all x ∈ CI with y = p(x) and
x̂ = q̂(y), then system (14) is safe with with respect to CI .

Proof. For any function h ∈ {h0, h∆t , . . . , hT , hB} let

c(x,k(y, x̂)) = Lfh(x) + Lgh(x)k(y, x̂) + α(h(x)− ν),

where we choose ν = µ if h = hτj and ν = 0 if h = hB . It
follows by Lipschitz continuity that:

‖Lfh(x̂)− Lfh(x)‖2 ≤ LLfh
ε(y),

‖α(h(x̂)− ν)− α(h(x)− ν)‖2 ≤ LαLhε(y),

‖Lgh(x̂)− Lgh(x)‖2‖k(y, x̂)‖2 ≤ LLgh
ε(y)‖k(y, x̂)‖2.

As k satisfies (16), we have that:

c(x,k(y, x̂))

= c(x̂,k(y, x̂)) + c(x,k(y, x̂))− c(x̂,k(y, x̂))

≥ c(x̂,k(y, x̂))− (a(y) + b(y)‖k(y, x̂)‖2) ≥ 0.

Since c(x,k(y, x̂)) ≥ 0 and µ satisfies (10), we have that the
system (14) is safe with respect to CI by [8, Lemma 2].

This result allows us to present an alternative to the BS-QP
controller which adds the measurement-robustness of MR-
CBFs. The constraints (16) can be directly integrated into
a Measurement-Robust Backup Set Optimization Program
controller MR-BS-OP as:

k(y, x̂) = argmin
u∈Rm

1

2
‖u− kd(x̂)‖22 (MR-BS-OP)

s.t. Lfhτj (x̂) + Lghτj (x̂)u

− (aτj (y) + bτj (y)‖u‖2) ≥ −α(hτj (x̂)− µ)

LfhB(x̂) + LghB(x̂)u

− (aB(y) + bB(y)‖u‖2) ≥ −α(hB(x̂))

for all τj ∈ {0,∆t, . . . , T}. Since this controller is a second-
order cone program (SOCP), there exist a variety of solvers
capable of implementing it including ECOS [23]. Notably,
the conservative nature of the method scales with the bound
on the measurement-model error ε(y) and the MR-BS-OP
reduces to the BS-QP when ε(y) = 0. We remark that the
feasibility of MR-BS-OP for all x̂ ∈ Rn can be ensured
by adding a slack variable to the optimization problem. The
impact of the slack variable on safety can be understood via
the concept of projection-to-state safety [24].



Fig. 3. Experimental results using SLAM from the onboard Intel RealSense T265 and constant desired velocity of 1 m/s. The notation and color schemes
are the same as in Fig. 2. (Left) An image of the Segway platform. (Center) Trajectories generated using the BS-QP. The true trajectory exits the safe set
at t = 6.7 s. The measurement error is plotted in blue. (Right) Trajectories generated using the MR-BS-OP. Both the true and measured trajectories are
safe demonstrating the robustness of the MR-BS-OP when compared to the BS-QP.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the efficacy of the proposed
MR-BS-OP controller on a modified Ninebot E+ Segway
platform in both simulation and hardware experiment.

We consider a 4-dimensional asymmetrical Segway model
shown in Figures 2 and 3. The state of the system consists
of the position x, the forward velocity ẋ, the pitch angle
ψ, and the pitch rate ψ̇. The equations of motion were
derived using Newton-Euler method treating the Segway as
an inverted pendulum with control input as torque command
at the wheels; see [8]. The Backup Set method for generating
control invariant sets is particularly relevant for this system
due to its non-minimum phase dynamics.

The desired safe set was chosen empirically to be the
set of states with position less than 2 m from the origin,
i.e. C = {x ∈ Rn : x ≤ 2} and h(x) = 2 − x. The
backup controller was an LQR controller on the linearized
system dynamics and the backup set was an estimate of the
region of attraction of the LQR controller to the upright
equilibrium state, given by a quadratic Lyapunov function.
This set is then translated to match the current position of the
Segway, while not allowing it to exceed the set boundary. The
functions hτ , τ ∈ [0, T ] were converted into four CBFs hτj .
Lastly, the Lipschitz constants for hτj were found explicitly
by inspection of the Segway dynamics and the Lipschitz
constants for hB were found by sampling the state space
in simulation and taking the largest numerical gradient.

Simulation Results. The MR-BS-OP was first validated
in simulation in a ROS-based environment, found here1.
Measurement-model uncertainty was achieved by artificially
adding a constant error of −0.4 m to the true state. The
simple test scenario involved driving the Segway forward
with a constant desired velocity of 1 m/s. As seen in Figure
2, the MR-BS-OP provided robustness to this error. Impor-
tantly, without measurement-robustness, the system would be
unsafe due to uncertainty in the state.

Hardware Results. The MR-BS-OP was then implemented
on hardware. State estimates for ẋ, ψ, and ψ̇ were found

1Simulation code github.com/rkcosner/mrcbf_IROS21.git

using wheel incremental encoders and a VectorNav VN-100
IMU. The position estimate for x was obtained from an Intel
RealSense T265 onboard camera running proprietary Visual
Inertial Odometry (VIO) based SLAM. Onboard computation
was performed by a Jetson TX2 which computes control
actions and relays them to the low-level motor controllers.
The TX2 concurrently runs Linux with ROS, enabling ex-
ternal communication and logging, and the ERIKA3 real-
time operating system, which enables real-time low-level
communication and computation of the control action.

As the (ẋ, ψ, ψ̇) state estimates provided by the encoders
and IMU are highly accurate, we focus on making the system
robust to measurement error in its vision-based position
estimate x̂. An OptiTrack motion capture system was used
in laboratory experiments to provide x estimates which are
considered true. These closely matched the encoder position
estimates for short trials, so the encoder x estimates were
considered true in the outdoor experiments. This data was
used to determine the error bound ε(y) that appears in the
MR-CBF constraint when using the onboard camera.

The value ε(y) = 0.4 was chosen as an upper bound on
the measurement error for all y ∈ p(C). The MR-BS-OP was
implemented at the embedded level in the ERIKA3 operating
system using the ECOS SOCP solver [23]. The desired con-
troller kd was a proportional-derivative controller tracking
user velocity inputs. The backup trajectory φkBτ (x̂) and its
partial derivatives were approximated via Euler integration
using a time step of ∆t = 5 ms and the time used to expand
the backup set CB to CI was T = 1 s. The MR-BS-OP ran
at 250 Hz with 5 decision variables, 4 linear constraints, and
6 second order cone constraints and saturated at ±20 Nm.

To demonstrate the method, a simple scenario is executed
on the Segway in which it is driven forward at a desired
velocity of 1 m/s. This scenario is performed with both the
BS-QP and the MR-BS-OP. The results of these experiments
can be found in Figure 3, images from the experiment can
be seen in Figure 4, and a video can be found at [25]. With
the BS-QP controller the estimated state x̂ remains safe, but
the true state x becomes unsafe whereas with the MR-BS-
OP controller both the estimated and the true state are kept
safe. This highlights the importance of providing robustness
against measurement uncertainty, as achieved by Theorem 3.



Fig. 4. Images from the experiment using the MR-BS-OP controller. The Segway is piloted towards a wall of yellow boxes and the controller ensures that
it remains safe, i.e. that it does not crash into the boxes. (Top) Time lapse of the Segway trajectory. (Bottom) Camera images taken from the perspective
of the Segway throughout the experiment. The images are displayed in chronological order from left to right. A video can be found at [25].

V. CONCLUSION
This paper established robust controller synthesis with for-

mal safety guarantees for systems relying on uncertain mea-
surements. We approached this problem through the frame-
work of CBFs. We additionally highlighted the importance
of control invariant sets and experimentally implemented the
Backup Set method to produce such a set for a Segway.
Our theoretical construction culminated in the integration
of the Backup Set method with MR-CBFs, which provides
robustness to state measurement uncertainty in the safety
guarantees. We implemented the proposed control method on
a Segway platform and demonstrated robustly safe operation
in experiments. Future work includes addressing feasibility
of the MR-BS-OP for general systems and developing online
methods to efficiently identify the required error bound in the
context of probabilistic and time-varying uncertainties.

REFERENCES

[1] J. C. Knight, “Safety critical systems: challenges and directions,” in
International Conference on Software Engineering (ICSE), 2002, pp.
547–550.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” Trans-
actions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[3] U. Borrmann, L. Wang, A. D. Ames, and M. Egerstedt, “Control
barrier certificates for safe swarm behavior,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 68–73, 2015.

[4] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European Control Conference (ECC). IEEE, 2019, pp. 3420–3431.

[5] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference (ACC). IEEE, 2016, pp. 322–328.

[6] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre, Viability theory: new
directions. Springer Science & Business Media, 2011.

[7] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC). IEEE,
2017, pp. 2242–2253.

[8] T. Gurriet, M. Mote, A. Singletary, P. Nilsson, E. Feron, and A. D.
Ames, “A scalable safety critical control framework for nonlinear
systems,” IEEE Access, vol. 8, pp. 187 249–187 275, 2020.

[9] M. Jankovic, “Robust control barrier functions for constrained sta-
bilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367,
2018.

[10] R. Takano and M. Yamakita, “Robust constrained stabilization control
using control Lyapunov and control barrier function in the presence
of measurement noises,” in Conference on Control Technology and
Applications (CCTA). IEEE, 2018, pp. 300–305.

[11] A. Clark, “Control barrier functions for complete and incomplete
information stochastic systems,” in American Control Conference
(ACC). IEEE, 2019, pp. 2928–2935.

[12] P. Nilsson and A. D. Ames, “Lyapunov-like conditions for tight
exit probability bounds through comparison theorems for SDEs,” in
American Control Conference (ACC). IEEE, 2020, pp. 5175–5181.

[13] A. Singletary, Y. Chen, and A. D. Ames, “Control barrier func-
tions for sampled-data systems with input delays,” arXiv preprint
arXiv:2005.06418, 2020.

[14] S. Dean, A. J. Taylor, R. K. Cosner, B. Recht, and A. D. Ames,
“Guaranteeing safety of learned perception modules via measurement-
robust control barrier functions,” arXiv preprint arXiv:2010.16001,
2020.

[15] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
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