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Abstract—Balancing safety and performance is one of the
predominant challenges in modern control system design. More-
over, it is crucial to robustly ensure safety without inducing
unnecessary conservativeness that degrades performance. In this
work we present a constructive approach for safety-critical
control synthesis via Control Barrier Functions (CBF). By filtering
a hand-designed controller via a CBF, we are able to attain
performant behavior while providing rigorous guarantees of
safety. In the face of disturbances, robust safety and performance
are simultaneously achieved through the notion of Input-to-State
Safety (ISSf). We take a tutorial approach by developing the
CBF-design methodology in parallel with an inverted pendulum
example, making the challenges and sensitivities in the design
process concrete. To establish the capability of the proposed ap-
proach, we consider the practical setting of safety-critical design
via CBFs for a connected automated vehicle (CAV) in the form
of a class-8 truck without a trailer. Through experimentation
we see the impact of unmodeled disturbances in the truck’s
actuation system on the safety guarantees provided by CBFs. We
characterize these disturbances and using ISSf, produce a robust
controller that achieves safety without conceding performance.
We evaluate our design both in simulation, and for the first time
on an automotive system, experimentally.

Index Terms—Robust safety-critical control, control barrier
functions, input-to-state safety, connected automated vehicles.

I. INTRODUCTION

Safety is an ever more pressing requirement for mod-
ern control systems as they are deployed into increasingly
complex real-world environments. Simultaneously, meeting
performance requirements is a major driving factor in control
system design. As these two objectives may naturally oppose
each other, it is necessary to consider an active approach
for enforcing safety that impacts performance only when
it is critical for the safety of the system [1], [2]. Control
Barrier Functions (CBFs) have been demonstrated to be a
powerful tool for constructively synthesizing controllers that
yield strong performance and intervene only when safety is
at risk of being compromised [3]–[5]. The utility of CBFs
has been confirmed by their experimental application on real-
world control systems, including mobile robots [1], [6], robotic
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swarms [7], autonomous aerial vehicles [8], robotic arms
[9], robotic manipulators [10], quadrupedal robots [11], and
bipedal robots [12], as well as simulation results on automotive
systems [3], autonomous naval vehicles [13], and spacecraft
[14]. The variety in this collection of results indicates that
CBFs capture fundamental concepts underlying the notion of
safety, irrespective of a specific domain, and suggests that
CBFs are a valuable tool to consider in the process of modern
control system design.

One of the appealing features of the CBF-based method-
ology for safety-critical control synthesis is the relatively
intuitive nature of the theoretical safety guarantees they endow
a system with. The study of set invariance, or the state of
a system remaining within a prescribed set, has long been
of interest in the study of dynamic systems [15] and control
[16]. The foundational work in [17] proposed the notion of
a barrier function as a tool for checking the invariance of a
set given a model of the system dynamics. In simple terms1,
a barrier function takes positive values for states inside a
set, and is zero on the boundary of the set. If the time
derivative of the barrier function is positive on the boundary
of the set, the value of barrier must grow and the system
thus must remain in the set. This idea was quickly adapted to
the context of control synthesis, yielding CBFs and a means
to constructively achieve set invariance. Synthesis was first
proposed through structured controllers [19], but was later
expanded using convex optimization to produce safety-filters
that minimally modify a hand-designed controller to ensure
safety [1], [3], [4]. The combination of intuitive theoretical
concepts with relatively simple control synthesis techniques
promoted rapid development of CBFs, including formulations
for higher-order systems [20]–[22] and discrete-time systems
[23], as well as constructive tools for synthesizing CBFs [24]–
[26] and methods for sets with complex geometries [27], [28].

Inherent in the theoretical safety guarantees provided by
CBFs is a dependence on the model of the system dynamics,
thus raising subsequent questions of robustness. Resulting
works have explored robustness to disturbances [29]–[35],
measurement errors [36], unmodeled dynamics [37], and
sector-bounded uncertainties [38]. The early work in [29]
noticed a robustness to disturbances inherent in CBFs, which
drawing inspiration from the notion of Input-to-State Stability
frequently seen when considering robust stabilization of non-
linear systems [39], was formalized into the idea of Input-to-
State Safety (ISSf) in [32]. Instead of trying to keep a specific

1We recommend the reader to [18] for a comprehensive mathematical study
of the connections between barrier functions and set invariance.



Fig. 1. Experimental configuration for heavy-duty CAV problem. (Top) Controller design without robustifying element yields safety violation
and collision. (Bottom) Robust safety-critical controller ensures CAV brakes early and aggressively enough to maintain safe distance.

set invariant in the presence of disturbances as in [30], [31],
which may induce conservativeness and degrade the perfor-
mance of a controller, ISSf quantifies how the set kept invariant
grows in the presence of disturbances. Moreover, it provides
a simple modification for CBF-based controllers to control
this growth, which was extended in [34] to permit greater
performance while maintaining meaningful safety guarantees.
As we demonstrate in this work, this paradigm for robust
safety naturally lends itself to the design-test-redesign process,
as the growth of the invariant set can be tuned to satisfy safety
requirements while meeting performance metrics.

Despite the fact that CBFs were initially presented as a tool
for safety-critical control synthesis for automotive systems [3],
[29], they have yet to be experimentally realized on them.
A primary challenge in using CBFs to ensure safety for a
complex system such as a full-scale connected automated
vehicle (CAV) lies in addressing discrepancies between the
system model and the real-world system. In the context of a
heavy-duty CAV, a significant portion of these discrepancies
arise due to simplified models of the complex interactions
within the CAV braking elements [40], and manifest as dis-
turbances in the input applied to the system. Accounting for
these complicated interactions in the controller design may
greatly increase the intricacy of the resulting controller, but
completely ignoring them may yield safety violations under
critical conditions such as a harsh brake from a preceding
vehicle as seen in Fig. 1 (top). Thus, balancing the complexity
of the model used in design with the need to satisfy safety
requirements is a challenging yet appropriate setting to deploy
robust CBF-based control design.

There are two main contributions in this paper. The first
is a tutorial presentation of a robust safety-critical design
methodology using CBFs and ISSf. Concepts are introduced in
parallel with an inverted pendulum example, thus providing a
concrete context for readers to quickly establish an understand-
ing of the relevant details in safety-critical control synthesis.
We provide an appropriate level of theoretical discussion to
clearly state the theoretical safety guarantees achieved with
this control paradigm, but focus predominantly on the practical
challenges and trade-offs encountered in safety-critical control
design. Compared to the original works [3], [4] and overview

work [5] on CBFs, we believe that this presentation provides
a more approachable introduction to the topic of safety-
critical control synthesis for practitioners. Moreover, all details
necessary to exactly recreate the simulation results in the
inverted pendulum example are provided.

The second contribution of this work is a more practi-
cal application of the presented safety-critical control design
methodology that considers a heavy-duty CAV, seen in Figure
1. We highlight the entire process of safety-critical control
design including system modeling, specification of safety
requirements via a CBF, nominal performance-based controller
design, simulation, and experimental testing on a full-scale
automated class-8 tractor. The impacts of unmodeled distur-
bances seen in experimental results are quantified and used to
robustify the safety-critical controller, which is subsequently
implemented in simulation and experimentally. We believe
that combined tutorial presentation and the proposed design-
test-redesign process on a challenging real-world system is
precisely the approach necessary to advance CBF-based con-
trol design from the academic setting to a tool useful for the
practicing control engineer.

The organization of this paper is as follows. In Section II
we present the safety-critical control problem, review CBFs,
and explore how a nominal controller may be modified via
CBFs to endow a system with theoretical safety guarantees.
In Section III we introduce disturbances into the input to
the system, and explore how these impact theoretical safety
guarantees through the lens of ISSf. Moreover, we present
a simple framework for robustly modifying a CBF and the
resulting controller design to provide a measure of control
over how these safety guarantees degrade. In Section IV the
connected automated vehicle problem is presented considering
an automated heavy-duty vehicle. A CBF specified to encode
safety for the CAV and a hand-designed nominal controller are
incorporated into a safety-critical controller that is evaluated
in simulation and verified to ensure safety. In Section V we
deploy the controller experimentally, and see how unmodeled
disturbances lead to degradation of safety guarantees. We
characterize these disturbances and robustify the controller
design, and lastly verify the ability of this controller to meet
safety requirements both in simulation and experiments.



II. SAFETY-CRITICAL CONTROL

In this section we provide a review of safety and Control
Barrier Functions (CBFs). These definitions will be used in
the formulation of the safety-critical control problem. To make
these concepts more concrete, we apply them to an inverted
pendulum system.

A. Control Barrier Functions

Consider the nonlinear control affine system:

ẋ = f(x) + g(x)u, (1)

with state x ∈ Rn, input u ∈ Rm, and continuous functions
f : Rn → Rn and g : Rn → Rn×m. Systems described by
such equations often appear in robotics, aerospace, power
electronics, and automotive systems.

Example 1. Consider a control system for an inverted pendu-
lum as depicted in Fig. 2, and described by the model:

d

dt

[
θ

θ̇

]
=

[
θ̇

g
l sin θ

]
︸ ︷︷ ︸

f(x)

+

[
0
1
ml2

]
︸ ︷︷ ︸
g(x)

u, (2)

with pendulum angle θ ∈ R and angular velocity θ̇ ∈ R defin-
ing the state x = [θ, θ̇]>, and parameters given by the mass
m, length l, and gravitational acceleration constant g. In
this example we will use the parameter values m = 2 [kg],
l = 1 [m] and g = 10 [m/s2]. The single input u ∈ R is a
torque applied at the pendulum base.

The input u is often specified via a state-feedback controller
k : Rn → Rm, yielding the closed-loop system dynamics:

ẋ = f(x) + g(x)k(x). (3)

We assume that for any initial condition x0 , x(0) ∈ Rn,
there exists a unique solution x(t) to (3) for t ≥ 0, such that
the system is forward complete [41]. The notion of safety is
formalized by specifying a safe set in the state space which
the state of the system must remain in to be considered safe.
This can be utilized in many practical applications such as
distance-keeping [3], lane-keeping [6], and collision avoidance
[7] of automated vehicles. In particular, consider a set C ⊂ Rn
defined as the 0-superlevel set of a continuously differentiable
function h : Rn → R, yielding:

C = {x ∈ Rn : h(x) ≥ 0} , (4)
∂C = {x ∈ Rn : h(x) = 0}, (5)

Int(C) = {x ∈ Rn : h(x) > 0}, (6)

where ∂C and Int(C) are the boundary and interior, respec-
tively, of the set C. We refer to C as the safe set. This
construction motivates the following definitions of forward
invariance and safety:

Definition 1 (Forward Invariance & Safety). A set C ⊂ Rn is
forward invariant if for every x0 ∈ C, the solution x(t) to (3)
satisfies x(t) ∈ C for all t ≥ 0. The system (3) is safe with
respect to the set C if the set C is forward invariant.

m

l

θ

u

g

Fig. 2. Schematic of an inverted pendulum control system.

Example 2. A set C that we wish to keep safe for the inverted
pendulum that restricts the angular position and velocity is
given by the 0-superlevel set of the function:

h(θ, θ̇) = 1− θ2

a2
− θ̇2

b2
− θθ̇

ab
, (7)

with parameters a, b > 0. In this example we will use the
parameter values a = 0.25 [rad] and b = 0.5 [rad/s]. The
resulting set:

C =

{[
θ

θ̇

]
∈ R2

∣∣∣∣∣1− θ2

a2
− θ̇2

b2
− θθ̇

ab
≥ 0

}
, (8)

is an ellipse as depicted in Fig. 3 by a gold region.

Before defining Control Barrier Functions, we review the
following definitions [5], [42]. We denote a continuous func-
tion α : R≥0 → R≥0 as class K∞ (α ∈ K∞) if α(0) = 0, α
is strictly increasing and limr→∞ α(r) =∞. As an example,
any function in the form α(r) = rc where c > 0 is class
K∞. Note that differentiability is not required for a class
K∞ function. Similarly, a continuous function α : R→ R
is said to belong to extended class K∞ (α ∈ Ke

∞) if
α(0) = 0, α is strictly increasing, and limr→∞ α(r) =∞ and
limr→−∞ α(r) = −∞. The previous example of α(r) = rc

is class Ke
∞ for c = 1, 3, 5, . . . The inverses of class K∞

and class Ke
∞ functions belong to class K∞ and class Ke

∞,
respectively. Examples of these functions and their inverses
are depicted in Fig. 4. We may use these functions to define
Control Barrier Functions.
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Fig. 3. Simulation results for the inverted pendulum system. The gold
ellipse is the safe set C as defined in (8). The black line is the set
where Lgh(x) = 0 as defined in (11). The dashed blue line is the
trajectory of the system evolving under kn as defined in (16), which
leaves the safe set C. The green and purple regions indicate where the
controller kn meets and fails to meet the CBF condition, respectively.
The dashed red line is the trajectory of the system evolving under
kQP as defined in (21)-(22), which remains inside the safe set C.



Definition 2 (Control Barrier Function, [4]). Let C ⊂ Rn be
the 0-superlevel set of a continuously differentiable function
h : Rn → R. The function h is a Control Barrier Function
(CBF) for the system (1) on C if there exists α ∈ Ke

∞ such
that for all x ∈ Rn:

sup
u∈Rm

[ ḣ(x,u)︷ ︸︸ ︷
∂h

∂x
(x)f(x)︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

u

]
> −α(h(x)). (9)

An equivalent way to express (9) is given in [30] as:

Lgh(x) = 0 =⇒ Lfh(x) + α(h(x)) > 0. (10)

This expression is often an easier condition to evaluate in
certifying that a given function is a CBF.

Example 3. The function h given as in (7) is a CBF for the
inverted pendulum system (2) on C. To see this, consider a
function α ∈ Ke

∞ defined as α(r) = αcr with αc > 0 satis-
fying αc ≤ b/a. In this example we will take the parameter
value αc = 0.2 [1/s]. Checking the CBF condition defined in
(10), we see that:

Lgh(θ0, θ̇0) = 0 =⇒ θ̇0 = − b

2a
θ0. (11)

This equation defines a line as depicted in Fig. 3 by a solid
black line. We have that on this line:

Lfh(θ0, θ̇0) + α(h(θ0, θ̇0)) = αc +
3

4a2

(
b

a
− αc

)
θ2

0 > 0,

such that the condition (10) is met for our choice of αc.
We note that if we consider a set, denoted by C̃ and defined

as the 0-superlevel set of a function h̃ : R2 → R given by:

h̃(θ, θ̇) = 1− θ2

a2
− θ̇2

b2
, (12)

which does not include the term θθ̇/ab, then the function h̃ is
not a CBF for the system (2) on C̃. To see this, note that:

Lgh̃(θ0, θ̇0) = 0 =⇒ θ̇0 = 0. (13)

In turn, we have that for any α ∈ Ke
∞:

Lf h̃(θ0, θ̇0) + α(h̃(θ0, θ̇0)) = α
(
1− θ2

0/a
2
)
. (14)

The condition (10) is not satisfied for |θ0| ≥ a (including
|θ0| = a, which would be in ∂C̃ and thus in the safe set). Thus
it is important to choose the safe set and design the CBF to
be compatible with the system dynamics, eliminating points
where the CBF condition is not met.

Given a CBF h for (1) on C and a corresponding function
α ∈ Ke

∞, we can consider the point-wise set of all control
values that satisfy (9):

KCBF(x) =
{
u ∈ Rm

∣∣∣ ḣ(x,u) ≥ −α(h(x))} . (15)

One of the main theoretical result for CBFs relates controllers
taking values in the set KCBF to the safety of (3) on C:

Theorem 1 ( [4], [18]). Let C ⊂ Rn be the 0-superlevel set
of a continuously differentiable function h : Rn → R. If h is
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Fig. 4. Visualization of class Ke
∞ functions and their inverses.

a CBF for (1) on C, then the set KCBF(x) is non-empty for
each x ∈ Rn, and for any continuous controller k : Rn → Rm
such that k(x) ∈ KCBF(x) for all x ∈ Rn, the system (3) is
safe with respect to the set C.

Proofs of Theorem 1 may be found in [4], [18]. We note
the distinction of a strict inequality in the CBF condition in
(9) and a non-strict inequality in (15). As studied in [30],
satisfaction of the strict inequality in (9) and (10) is a property
of the function h and the dynamics f and g, but not does
depend on a specific controller. This property is useful in
establishing regularity properties of controllers synthesized
with the CBF h. In particular, it imposes requirements on
the function h when Lgh(x) = 0, as seen in the preceding
example. In contrast, enforcing safety via Theorem 1 only
require that the inputs specified by a given controller meet
the non-strict inequality in (15) (such an input’s existence is
implied by the CBF condition in (9)).

B. Safety-Critical Controller

It is often possible to design a controller that achieves a
desired degree of performance, but for which it is difficult to
verify necessary safety requirements are met.

Example 4. Consider a continuous controller kn : R2 → R for
the inverted pendulum model (2) that stabilizes the pendulum
to an upright position, given by the feedback linearization [43]
or computed torque controller [44] of the form:

kn(θ, θ̇) = ml2
(
−g
l
sin θ −Kpθ −Kdθ̇

)
, (16)

with controller gains Kp,Kd > 0. This controller yields the
closed-loop system:

d

dt

[
θ

θ̇

]
=

[
0 1
−Kp −Kd

] [
θ

θ̇

]
, (17)

such that the upright equilibrium x∗ =
[
0, 0
]>

is exponentially
stable. In this example we will use the parameter values
Kp = 0.6 [1/s2] and Kd = 0.6 [1/s]. We use numerical inte-
gration to determine a solution trajectory from the initial con-
dition x(0) = [−0.1, 0.5]> ∈ C. This trajectory is depicted in
Fig. 3 by a dashed blue curve. Although the controller kn

stabilizes the system to the upright position, in doing so it
causes the state of the system to leave the safe set C.

CBFs provide a means for modifying a controller to ensure
it explicitly enforces the safety of the system. Suppose that



we have a continuous controller kn : Rn → Rm, referred to
as the nominal controller, that does not necessarily ensure
the closed-loop system (3) is safe with respect to the set C,
but achieves a desired degree of performance. Furthermore,
suppose that we have a CBF h for (1) on C with corresponding
function α ∈ Ke

∞. The goal of maintaining the performance
of the nominal controller kn while ensuring the safety of the
system (3) with respect to the set C motivates an optimization-
based safety-critical controller kQP : Rn → Rm defined as:

kQP(x) = argmin
u∈Rm

1

2
‖u− kn(x)‖22 (18)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)).

This controller takes the same value as the nominal con-
troller if the nominal controller meets the requirements for
safety specified by the CBF h, i.e., kQP(x) = kn(x) if
kn(x) ∈ KCBF(x). If the nominal controller does not meet
the safety requirements, i.e., kn(x) /∈ KCBF(x), the input
is chosen to meet the safety requirement with the smallest
deviation from the value of kn. The following theorem de-
scribes the feasibility of the optimization problem defining
this controller, and provides a closed-form solution for the
optimization problem:

Theorem 2. Let C be the 0-superlevel set of a continuously
differentiable function h : Rn → R, and let kn : Rn → Rm be
a continuous controller. If h is a CBF for (1) on the set C
with corresponding function α ∈ Ke

∞, then the optimization
problem in (18) is feasible for any x ∈ Rn and has a closed-
form solution given by:

kQP(x) = kn(x) + max {0, η(x)}Lgh(x)
>, (19)

where the function η : Rn → R is defined as:

η(x) =

{
−Lfh(x)+Lgh(x)kn(x)+α(h(x))

‖Lgh(x)‖22
if Lgh(x) 6= 0,

0 if Lgh(x) = 0.
(20)

Furthermore, kQP is continuous and kQP(x) ∈ KCBF(x) for
all x ∈ Rn.

A proof of this theorem is provided in the appendix. The
function η only takes positive values (η(x) > 0) when the
nominal controller does not meet safety requirements:

Lfh(x) + Lgh(x)kn(x) + α(h(x)) < 0,

and thus the nominal controller kn is only modified when
it does not satisfy safety requirements. The second case in
the definition of the function η is presented to resolve the
singularity that occurs at Lgh(x) = 0 when the closed-form
solution (19) is implemented. We note that, as stated in
Theorem 2, the controller kQP is continuous, and thus, this
singularity does not produce a large jump in the input. It
may even be ignored if the controller is implemented as the
optimization problem in (18) and numerically solved.

Remark 1. For a single input (m = 1), if Lgh(x) > 0 for a
particular x ∈ Rn, the controller (19) can be expressed as:

kQP(x) = max

{
kn(x),−

Lfh(x) + α(h(x))

Lgh(x)

}
. (21)

Similarly, if Lgh(x) < 0 for a particular x ∈ Rn, the con-
troller (19) reduces to:

kQP(x) = min

{
kn(x),−

Lfh(x) + α(h(x))

Lgh(x)

}
. (22)

These controllers can be switched between based on the sign
of Lgh(x), with kQP(x) = kn(x) when Lgh(x) = 0.

Example 5. We deploy the switching controller
kQP : R2 → R defined in (21)-(22) for the inverted pendulum
system using the nominal controller kn : R2 → R defined in
(16). We use numerical integration to determine a solution
trajectory from the initial condition x(0) = [−0.1, 0.5]> ∈ C.
This trajectory is depicted in Fig. 3 by a dashed red curve. We
see that the controller kQP ensures that the solution trajectory
remains within the safe set C by deviating from the nominal
controller in the purple region as specified by (21)-(22).

III. ROBUSTNESS TO DISTURBANCE

A challenge frequently encountered when deploying model-
based controllers onto real-world systems is a mismatch be-
tween the commanded input and the input actually received by
the system. This mismatch can arise due to actuator dynamics,
actuator delays, input quantization, input saturation, or noise.
In the case when a state feedback controller k is utilized, any
error in state measurements can cause further variation from
the ideal control effort. These imperfections in how control
inputs affect the system can lead to degradation in the safety
guarantees attained by the safety-critical controller (19).

In this part we consider a system with an input disturbance:

ẋ = f(x) + g(x)(u+ d(t)), (23)

where d : R≥0 → Rm reflects a time varying disturbance
modifying the input u (such that the input the system actually
receives is u+ d(t)). We assume that the disturbance is
bounded and piecewise continuous2 in time. This is a practical
assumption, and determining such bounds on the disturbance
is an important step of the control design. This assumption
also allows us to define:

‖d‖∞ = sup
t≥0
‖d(t)‖2 <∞. (24)

Given a continuous controller k : Rn → Rm, we may also
introduce the notion of a disturbed closed-loop system:

ẋ = f(x) + g(x)(k(x) + d(t)). (25)

As before, we assume that for any initial condition
x0 , x(0) ∈ Rn and any bounded and piecewise continuous
disturbance signal d : R≥0 → Rm, there exists a unique solu-
tion x(t) to (25) for t ≥ 0.

Example 6. We will consider an example disturbance signal
for the inverted pendulum specified as:

d(t) =M(1− s(t− 5)− s(t− 10) + s(t− 15)) (26)

2We take this definition as in [45], with the existence of one-sided limits.
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Fig. 5. Disturbance signal for the inverted pendulum system example
as defined in (26).

where M ≥ 0 and s : R→ R is the heaviside function:

s(τ) =

{
0 if τ < 0,

1 if τ ≥ 0.
(27)

With this disturbance we have ‖d‖∞ =M . In this example
we use the parameter value M = 0.75 [N·m] and the corre-
sponding disturbance signal is depicted in Fig. 5.

A. Input-to-State Safety

In the presence of an input disturbance, Input-to-State Safe
Control Barrier Functions (ISSf-CBFs) provide a tool for
designing controllers with a formal safety guarantee [32],
[34]. First, we present the notion of input-to-state safety
(ISSf) which captures the intuition that it may no longer
be possible to render the set C forward invariant (and thus
safe) in the presence of disturbances. Instead, a larger set
that scales proportionally with the disturbance may instead
be rendered forward invariant. Specifically, consider the set
Cδ ⊂ Rn defined as:

Cδ = {x ∈ Rn : h(x) + γ(h(x), δ) ≥ 0} , (28)
∂Cδ = {x ∈ Rn : h(x) + γ(h(x), δ) = 0}, (29)

Int(Cδ) = {x ∈ Rn : h(x) + γ(h(x), δ) > 0}, (30)

with γ : R× R≥0 → R≥0 satisfying γ(a, ·) ∈ K∞ for all
a ∈ R. This implies Cδ = C when δ = 0. We also require
γ(·, b) to be continuously differentiable for all b ∈ R≥0. We
have that ∂Cδ and Int(Cδ) are the boundary and interior,
respectively, of the set Cδ . With this construction in mind,
we have the following definition:

Definition 3 (Input-to-State Safety (ISSf)). Let C ⊂ Rn be
the 0-superlevel set of a continuously differentiable function
h : Rn → R. The system (25) is input-to-state safe (ISSf)
with respect to the set C if there exists γ : R× R≥0 → R≥0

satisfying γ(a, ·) ∈ K∞ for all a ∈ R and γ(·, b) continuously
differentiable for all b ∈ R≥0 such that for all δ ≥ 0 and
d : R≥0 → Rm satisfying ‖d‖∞ ≤ δ, the set Cδ defined by
(28)-(30) is forward invariant. If the system (25) is input-to-
state safe with respect to the set C, the set C is referred to as
an input-to-state safe set (ISSf set).

Similar to how Control Barrier Functions were defined in
Sec. II, we now define Input-to-State Safe Control Barrier
Functions as a tool for robust safety-critical control synthesis:

Definition 4 (Input-to-State Safe Control Barrier Function
(ISSf-CBF)). Let C ⊂ Rn be the 0-superlevel set of a con-
tinuously differentiable function h : Rn → R. The function h
is an Input-to-State Safe Control Barrier Function (ISSf-CBF)

for (23) on C if there exists an α ∈ Ke
∞ and a continuously

differentiable function ε : R→ R>0 such that for all x ∈ Rn:

sup
u∈Rm

[Lfh(x) + Lgh(x)u] > −α(h(x))+
‖Lgh(x)‖22
ε(h(x))

. (31)

Given an ISSf-CBF h for (23) and corresponding functions
α ∈ Ke

∞ and ε : R→ R>0, we can consider the point-wise set
of all control values that satisfy (31):

KISSf(x) =
{
u ∈ Rm

∣∣∣ ḣ(x,u) ≥ −α(h(x)) + ‖Lgh(x)‖22
ε(h(x))

}
.

(32)

The main theoretical result in [34] relates properties of the
function ε and controllers synthesized via an ISSf-CBF to the
input-to-state safety of the set C:

Theorem 3 ( [34]). Let C ⊂ Rn be the 0-superlevel set of a
continuously differentiable function h : Rn → R. Let h be an
ISSf-CBF for (23) on C with corresponding functions α ∈ Ke

∞
and ε : R→ R>0 such that ε and α−1 ∈ Ke

∞ are continuously
differentiable and ε satisfies:

dε

dr
(h(x)) ≥ 0, (33)

for all x ∈ Rn. Then the set KISSf(x) is non-empty for each
x ∈ Rn, and if a continuous controller k : Rn → Rm satisfies
k(x) ∈ KISSf(x) for all x ∈ Rn, then for any δ ≥ 0, the
system (25) is safe with respect to the set Cδ defined as in
(28)-(30) with γ defined as:

γ(h(x), δ) , −α−1

(
−ε(h(x))δ

2

4

)
, (34)

for all d satisfying ‖d‖∞ ≤ δ. This implies C is an ISSf set.

Remark 2. The original definition of ISSf presented in [32]
differs from Definition 3 in the function γ. We allow γ to be a
function of h in addition to δ. This leads to a generalization of
the ISSf-CBF definition in [32], which reduces to the definition
given in [32] if ε(r) = c > 0 for all r ∈ R. The definitions
presented here provide a factor of flexibility in controller
design as detailed in [34].

The boundary of the set Cδ that is rendered forward invariant
is defined as a level-set of the ISSf-CBF h as in (29). Given
a δ ≥ 0, the value of h on this level set, denoted as h∗ ≤ 0,
can be found by solving the equation:

h∗−α−1

(
−ε(h

∗)δ2

4

)
︸ ︷︷ ︸

γ(h∗,δ)

= 0. (35)

By definition, γ(h∗, δ) must be strictly positive for δ > 0,
implying that h∗ < 0 in the presence of disturbances. The
safety-critical controllers designed in the next section will
guarantee h(x(t)) ≥ h∗. Moreover, as δ increases, h∗ must get
more negative, implying that the boundary of Cδ falls farther
from the boundary of C. Control over this degradation in safety
can be achieved by modifying the function ε to yield different
values of h∗ as specified in (35). Various functions that satisfy
the necessary conditions for ε can be seen in Fig. 6.

Example 7. Given our choice of α for the inverted pendulum
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Fig. 6. Examples of the function ε that satisfy the condition in (33).

system, we have that:

γ(h(θ, θ̇), δ) =
ε(h(θ, θ̇))δ2

4αc
. (36)

As our disturbance signal is bounded by M , determining the
set kept forward invariant is done by considering δ =M .
Thus, we use the parameter value δ = 0.75 [N·m]. We choose
the exponential function:

ε(r) = ε0e
λr, (37)

with parameters ε0 > 0 and λ ≥ 0. With this choice we have
that (35) reduces to:

h∗ +
ε0e

λh∗
δ2

4αc
= 0. (38)

Once ε0 and λ are specified, (38) can be solved for h∗ to find
the value of h that corresponds to the boundary ∂Cδ . Fig. 7
(left) shows the value of h∗ for the different choices of ε0
and λ specified in Table I. The boundary ∂Cδ corresponding
to each set of parameters is shown in Fig. 7 (right) using the
same color code. The black and red parameter sets return the
same value of h∗, and thus the produce the same boundary
∂Cδ . In contrast, the green parameter set yields a larger set Cδ
as indicated by the smaller value of h∗ in Table I.

Color Black Red Green
ε0 [

1
N2m2s ] 0.15 0.5 4
λ 0 12 3
h∗ −0.1 −0.1 −0.55

TABLE I. Parameter sets for (37) in the inverted pendulum example.

B. Robust Safety-Critical Controller

As we saw with CBFs, it is possible to use an ISSf-CBF to
synthesize controllers that render a set Cδ forward invariant,
thus rendering the set C ISSf. Suppose that we have an ISSf-
CBF h for (23) on C with corresponding functions α ∈ Ke

∞
and ε : R→ R>0 that meet the requirements of Theorem 3.
Furthermore, suppose we have a continuous nominal controller
kn : Rn → Rm that is not necessarily safe. Motivated by the
optimization-based safety-critical formulation given in (18),
we define a controller kQP : Rn → Rm as:

kQP(x) = argmin
u∈Rm

1

2
‖u− kn(x)‖22 (39)

s.t. ḣ(x,u) ≥ −α(h(x)) + ‖Lgh(x)‖22
ε(h(x))

.

The following theorem provides a closed-form solution to the
optimization problem defining this controller and specify the
continuity and safety properties of the resulting controller:

Theorem 4. Let C be the 0-superlevel set of a function
h : Rn → R, and let kn : Rn → Rm be a continuous con-
troller. If h is an ISSf-CBF for (23) on the set C with
corresponding functions α ∈ Ke

∞ with continuously differ-
entiable inverse α−1 ∈ Ke

∞, and continuously differentiable
ε : R→ R>0 satisfying (33), then the optimization problem in
(39) is feasible for any x ∈ Rn and has a closed-form solution
given by:

kQP(x) = kn(x) + max {0, η(x)}Lgh(x)
>, (40)

where the function η : Rn → R is defined as:

η(x) =

{
− ḣ(x,kn(x))+α(h(x))

‖Lgh(x)‖22
+ 1

ε(h(x)) if Lgh(x) 6= 0,

0 if Lgh(x) = 0.
(41)

Furthermore, kQP is continuous and kQP(x) ∈ KISSf(x) for
all x ∈ Rn.

The proof of this theorem is performed similarly to the proof
of Theorem 2 with simple modifications for the introduction
of ε, and thus, it is omitted.

Remark 3. For a single input (m = 1), if Lgh(x) > 0 for a
particular x ∈ Rn, the controller (40) can be expressed as:

kQP(x) = max

{
kn(x),−

Lfh(x) + α(h(x))

Lgh(x)
+
Lgh(x)

ε(h(x))

}
.

(42)
Similarly, if Lgh(x) < 0 for a particular x ∈ Rn, the con-
troller (40) reduces to:

kQP(x) = min

{
kn(x),−

Lfh(x) + α(h(x))

Lgh(x)
+
Lgh(x)

ε(h(x))

}
.

(43)
These controllers can be switched between depending on the
sign of Lgh(x), with kQP(x) = kn(x) when Lgh(x) = 0.

Example 8. We deploy the safety-critical controller kQP

defined in (21)-(22) with the nominal controller kn as in
(16) to the inverted pendulum system without considering
the disturbance d defined in (26). We see in the right panel
of Fig. 7 that this controllers fails to keep the system in
the safe set C, and deviates from it significantly. We next
deploy the safety-critical controller kQP defined in (42)-(43)
with the nominal controller kn as in (16). The exponential
function given in (37) is utilized with the black and red
parameter pairs as specified in Table I. We see in the right
panel of Fig. 7 that for both parameter sets, the controller
keep the trajectories within C, and thus, within Cδ , that is,
it guarantees h(x(t)) ≥ h∗. Despite having the same values
of h∗, we see the red parameter sets allows the system to
more closely approach the boundary of the safe set, while the
black parameter set forces the system to the equilibrium more
directly. A detailed discussion about the effect of the parameter
λ on conservativeness of the controller is provided in [34].
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Fig. 7. (Left) Curves corresponding to the value of h∗ solving (38) across the (ε0, λ) parameter space for the inverted pendulum example.
(Center) The boundary of the set Cδ rendered forward invariant for different choices of the parameters ε0 and λ for the inverted pendulum
example. Note that the Cδ contains the set C for each parameter set. (Right) Simulation results for the inverted pendulum system with
disturbances. The gold ellipse is the safe set C defined in (8). The blue line is the trajectory of the system evolving under kQP defined in
(21)-(22), which is not robust to disturbances and leaves the safe set. The black and dashed red lines are the trajectory of the system evolving
under kQP defined in (42)-(43) with different values for ε0 and λ. While both parameter sets yield the same forward invariant set Cδ , the
red parameter set is less conservative and allows the system to approach the boundary.

IV. SAFETY-CRITICAL CONTROLLER DESIGN FOR A
CONNECTED AUTOMATED TRUCK

In this section, we go through the process of designing
a safety-critical longitudinal controller for a connected auto-
mated truck. We first introduce the physical system and define
a safe set via a Control Barrier Function. We then present a
nominal performance-based controller, and synthesize a safety-
critical controller that modifies this nominal controller in a
minimally invasive way while ensuring safety.

A. Modeling Longitudinal Dynamics

In this work we consider a rear-axle-driven truck without a
trailer. Assuming the truck’s tires roll without slipping and the
truck travels on a flat road with no headwind, the longitudinal
dynamics of the truck are described by the following model:

v̇ =
T

meffR
− kv2 +mgγ

meff
. (44)

Here the state is given by the truck’s longitudinal speed v ∈ R,
the input is the torque applied on the rear axle T ∈ R, and
the parameters in the model are the mass of the truck m,
the mass moment of inertia of the rotating elements I , the
tire radius R, the effective mass meff = m+ I

R2 , the air drag
constant k, gravitational acceleration g, and rolling resistance
coefficient γ. Note that the second term in (44) is dissipative
in nature, and slows down the vehicle when it has a positive
velocity. This term may be directly accounted for in the control
design through via feedback linearization techniques [43], or
may be ignored as its omission simply introduces a factor of
conservativeness to the controller in terms of safety. The torque
input commanded of the system is computed from a desired
longitudinal acceleration command u ∈ R via feed-forward
maps. This torque input command is provided by a drive-by-
wire system to the low-level power generation systems that
produce the actual torque T ; see Fig. 8. With these feed-
forward maps in mind, we may simplify the model of the
longitudinal dynamics of the truck to:

v̇ = u. (45)

Now let us consider the scenario when the truck follows a
connected vehicle as depicted in Fig. 8. Using the truck model
in (45), the dynamics of this connected system are given by:

Ḋ = vL − v,
v̇ = u,

v̇L = aL,

(46)

where vL, aL ∈ R are the speed and acceleration of the lead-
ing vehicle, respectively, and D ∈ R denotes the bumper-to-
bumper headway distance between the truck and the lead
vehicle, yielding the state x = [D, v, vL]

> ∈ R3. The truck
and lead vehicle are outfitted with vehicle-to-vehicle (V2V)
communication systems, permitting the truck to receive motion
information from the lead vehicle such as its GPS position
which yields the distance D, its speed vL, and its acceleration
aL. We assume that the leader’s behavior satisfies:

aL ∈ [−aL, aL], vL ∈ [0, vL], (47)

where the parameters aL, aL, vL > 0 reflect a city-driving
scenario; see Table II.

B. Safety and Control Barrier Function

The safety task for the truck is to maintain a safe distance
behind the leader. This task motivates a Control Barrier

Fig. 8. A connected automated truck following a connected vehicle.
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Fig. 9. The value of the function ρ defined in (49), which defines
the minimum safe following distance as a function of the leader’s
velocity vL and truck velocity v.

Function of the form:

h(D, v, vL) = D − ρ(v, vL), (48)

where the headway function ρ : R2 → R describes the min-
imum safe distance between the vehicles given their current
velocities, v and vL. Motivated by [4] and [46], we define the
headway function as:

ρ(v, vL) = c0 + c1v + c2vL + c3v
2 + c4vvL + c5v

2
L, (49)

with parameters ci ∈ R for i = 0, . . . , 5; see Table II. The
value of the function ρ is visualized in the left panel of Fig. 9.
The corresponding safe set defined by h is given by:

C =


Dv
vL

 ∈ R3

∣∣∣∣∣∣ D ≥ ρ(v, vL)

 . (50)

To verify that the function h is a CBF for (46), observe that:

Lgh(D0, v0, vL,0) = 0 =⇒ c1 + 2c3v0 + c4vL,0 = 0, (51)

which describes a line in (v, vL) space where the condition
(10) must be met for all D ∈ R. We consider α(r) = αcr
with αc > 0, yielding:

Lfh(D, v0, vL,0) + α(h(D, v0, vL,0))

= vL,0 − v0 − aL(c2 + c4v0 + 2c5vL,0)

+ αc(D − ρ(v0, vL,0)).

(52)

Since checking the condition (10) analytically may be cum-
bersome using (52), we graphically evaluate it over a range
of D and vL,0 (and v0 defined implicitly through (51)) while
taking the worst case value of aL making (52) as negative as
possible; see the right panel in Fig. 9. This shows that for
αc = 0.1 [1/s], the value of (52) is strictly positive, ensuring
the condition (10) is satisfied.

aL = 5 [m/s2] c0 = 2 [m] κ = 0.8 [1/s]
aL = 10 [m/s2] c1 = 1.1 [s] αc = 0.1 [1/s]
vL = 20 [m/s] c2 = 0.6 [s] Dst = 5 [m]
δ = 4.5 [m/s2] c3 = 0.03 [s2/m] Dgo = 30 [m]
ε0 = 0.5 [s3/m] c4 = −0.03 [s2/m] A = 0.4 [1/s]
λ = 0.4 [1/m] c5 = −0.03 [s2/m] B = 0.5 [1/s]

TABLE II. Parameter values used in controller design.
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Fig. 10. The value of Lfh(x) + α(h(x)) as defined in (52) when
Lgh(x) = 0 for various distances. As the function is strictly positive
over the domain of interest, h is a CBF on C for (46).

C. Controller Design

Beyond the task of safety, we wish for our controller to
maximize other performance criteria such as ride comfort,
fuel economy, and string stability [47], [48]. To accomplish
this goal, we first design a nominal controller that prioritizes
performance. In particular, we will design a connected cruise
controller (CCC) for the truck that utilizes information about
the lead vehicle available through V2V connectivity. We
propose the following controller structure:

kn(D, v, vL) = A(V (D)− v) +B(W (vL)− v), (53)

with parameters A,B > 0, functions V : R≥0 → R≥0, and
W : R≥0 → R≥0. The first term in (53) specifies the distance
based speed error with the range policy:

V (D) =


0 if D < Dst,

κ(D −Dst) if Dst ≤ D ≤ Dgo,

vL if D > Dgo,

(54)

depicted in the top panel of Fig. 11, producing a desired
speed based on the distance D. Here Dst > 0 is the desired
stopping distance, 1/κ > 0 is the desired time headway, and
Dgo = vL/κ+Dst. The second term in (53) specifies the error
related to the relative speed with the speed policy:

W (vL) =

{
vL if vL ≤ vL,

vL if vL > vL,
(55)

depicted in the bottom panel of Fig. 11, which bounds the
speed error if the lead vehicle violates vL ≤ vL.

Fig. 11. (Top) Distance based range policy V defined in (54).
(Bottom) Speed policy W defined in (55).
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Fig. 12. (Left) Example profile for acceleration aL of lead vehicle used in numerical simulation. (Center) Velocity vL of lead vehicle (black)
and velocity of the truck using the nominal controller (53) (blue) and safety-critical controller (57) (red). (Right) Following distance D and
value of CBF h using the nominal controller and safety-critical controller.

Having designed the CBF h and the performance based
nominal controller kn, we can unify them via the safety-critical
controller formulation for single input systems given in (21)-
(22). Here we have:

Lfh(D, v, vL) = vL − v − aL (c2 + c4v + 2c5vL) ,

Lgh(D, v, vL) = −c1 − 2c3v − c4vL,
(56)

where Lgh(D, v, vL) < 0 for v ≥ 0 and vL ∈ [0, vL]. Then
one may utilize the switch structure (22):

kQP(D, v, vL) = min {kn(D, v, vL), ks(D, v, vL)} , (57)

where the second term is defined as:

ks(D, v, vL) = −
Lfh(D, v, vL) + αch(D, v, vL)

Lgh(D, v, vL)
. (58)

This controller utilizes the nominal controller kn to optimize
the performance when it is safe. Otherwise, the provably
safe controller ks becomes smaller than kn and intervenes
to ensure safety. Note that Lgh(D, v, vL) > 0 for sufficiently
large vL > vL (as c4 is negative) as well as sufficiently
negative v < 0, yielding the switch structure (21), but this is
outside the domain of interest in this application.

We simulate both the nominal controller and safety-critical
controller via numerical integration of the model (46) from the
initial condition x(0) = [27.4, 16, 16]> ∈ C. We use parameter
values as specified in Table II. The acceleration aL of the lead
vehicle is given by a time profile reflecting a hard braking
event, as seen in Fig. 12 (left). The velocity of the truck
converges to zero and a crash does not occur for both con-
trollers, but only the safety-critical controller ensures the truck
maintains a safe distance (indicated by hQP(x(t)) ≥ 0) as seen
in Fig. 12 (center, right). We see that the nominal controller
brakes less aggressively than the safety-critical controller, and
thus does not react quickly enough to avoid violating the safe
following distance requirement.

V. EXPERIMENTAL RESULTS & ROBUST DESIGN

In this section we provide a description of the automated
truck experimental configuration and present results using the
nominal and safety-critical controllers. Furthermore, we de-
ploy the method of robust control design using ISSf developed
in Section III, and demonstrate its advantages experimentally.

Fig. 13. (a) Vehicles used in experiments. (b) Image from the
dashboard of the truck during an experimental run. (c,d,e) Final
configurations of separate experiments. See [49] for a video.



0 5 10
-10

0

10

20

30

0 5 10

-6

-4

-2

0

2

4

0 5 10
-5

0

5

Fig. 14. (Left) Mean value (lines) and standard deviations (fills) of the distance D and the CBF h when using the nominal controller defined
in (53) (blue) and the safety-critical controller defined in (57) (red) in the truck experiment. The repeated experiments with these controllers
are highly consistent. (Center) Discrepancy between acceleration commanded by safety-critical controller (black) and actual acceleration of
the automated truck (red). (Right) Disturbance signal in input seen by the truck used to define the model (59).

A. Experimental Setup and Procedure

The automated truck used in our experiments is an In-
ternational ProStar+ Class-8 truck developed by the Navis-
tar [50]; see Fig. 13(a). Both the automated truck and the
lead vehicle are equipped with a V2X Onboard Unit (OBU)
developed by Commsignia [51]. These units are equipped with
an accelerometer, gyroscope, magnetometer, and GPS unit.
Furthermore, these OBUs support peer-to-peer communication
such that the automated truck may receive position, velocity,
and acceleration data from the lead vehicle through V2X
antennas shown in Fig. 13(a). The automated truck is addi-
tionally equipped with a Mobile Real-Time Targeting Machine
developed by Speedgoat [52], which interfaces with the V2X
OBU and the truck’s Engine Controller Unit (ECU) through
a Controller Area Network (CAN) bus. The Speedgoat runs
the controller for the system given a measurement stream of
values for D, v, vL, and aL coming from the V2X OBUs. It
computes a desired acceleration input and converts it to a
corresponding torque value through a feed-forward map. A
drive-by-wire system on the truck controls the engine and the
brake torques accordingly. The steering of the truck is done
manually by a human driver in the experiments.

In an effort to evaluate the repeatability of our experiments,
it is necessary to eliminate variation in the lead vehicle’s
behavior, which is being driven by a human. To achieve this,
we use a pre-recorded time profile of position, velocity, and ac-
celeration of the lead vehicle while it performs a hard braking
event. This profile for aL and vL is seen in the left and center
panels of Fig. 12, and was used to produce our simulation
results. We stream this data to the truck controller as the
perceived lead vehicle in our experiments. Experiments also
include a physical lead vehicle simulating the pre-recorded
motion for visualization purposes; see Fig. 13(b). Importantly,
the evaluation of safety is derived from evaluating the CBF
using the recorded time profiles rather than simply detecting
collisions such as Fig. 13(c). A video of the experiments are
available online [49].

B. Input Disturbances

We deploy both the nominal and safety-critical controller
on the automated truck with results as seen in the left panel

of Fig. 14. We see that not only does the nominal controller
consistently fails to meet the safety requirements imposed by
the CBF h, but the safety-critical controller also consistently
fails to meet the safety requirements. The top row in Fig. 1
illustrates an experimental run with the nominal controller.

To understand why the safety-critical controller fails, we
examine the discrepancy between the commanded acceleration
and actual acceleration of the automated truck, as seen in the
center panel of Fig. 14. One may observe a delay between
the commanded acceleration and the achieved acceleration.
This delay in acceleration is due to the fact that the power
generation of the truck is a complex nonlinear dynamical
system that has been imperfectly abstracted away by the feed-
forward maps that allow the simplified model in (45). Rather
than attempting to work with this complex nonlinear dynamic
system and improving the feed-forward maps, we describe
the discrepancy in commanded and actual acceleration as a
disturbance in the simplified model:

v̇ = u+ d(t), (59)

where d : R≥0 → R reflects the difference between com-
manded acceleration and actual acceleration.

As the disturbance d is caused by the complicated inter-
actions of the drive-by-wire system and power generation
dynamics, it may be difficult to use model-based techniques to
construct a meaningful bound δ for the worst-case disturbance.
Instead, we estimate the worst-case disturbance empirically
by comparing the actual acceleration v̇(t) to the commanded
acceleration u(t). In the right panel of Fig. 14, we see that the
largest difference in the commanded and actual acceleration
is around 4 [m/s2]. Thus, we study the degradation of safety
of the system taking a slightly larger value δ = 4.5 [m/s2].

C. Robust Design
To overcome this disturbance and improve the safe behavior

of the truck, we deploy the tools of ISSf-CBFs described in
Section III. As h satisfies the CBF condition (10), it also
satisfies the ISSf-CBF condition (31), where we take:

ε(r) = ε0e
λr, (60)

with ε0 > 0 and λ ≥ 0. The parameter λ introduces a measure
of flexibility by allowing one to require a greater degree of
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Fig. 15. (Left) Following distance and value of ISSf-CBF using the nominal controller (blue), safety-critical controller (red), and robust
safety-critical controller (green) in the disturbed simulation. (Right) Mean value (lines) and standard deviations (fills) of the distance D and
the ISSf-CBF h using the nominal controller (blue), safety-critical controller (red), and robust safety-critical controller (green) in experiment.

robustness when the truck is close to the leading vehicle, and
less robustness when the distance is greater. Given (60), the
forward invariant set is given by:

Cδ =


Dv
vL

 ∈ R3

∣∣∣∣∣∣ h(D, v, vL) ≥ −
ε0e

λh(D,v,vL)δ2

4αc

 .

(61)

As discussed in the inverted pendulum example, the set Cδ
being forward invariant implies that h(x(t)) ≥ h∗, where h∗

is the value of the ISSf-CBF h on the boundary of Cδ ,
which can be calculated by solving (35). The value of h∗

for different choices of ε0 and λ can be seen in Table III.
We then construct an optimization-based controller giving the
switch structure (43), since Lgh(D, v, vL) < 0 for v ≥ 0 and
vL ∈ [0, vL] (cf. (56)). This results in:

krob(D, v, vL) = min
{
kn(D, v, vL), ks(D, v, vL)

}
, (62)

where:

ks(D, v, vL) = ks(D, v, vL) +
Lgh(D, v, vL)

ε0eλh(D,v,vL)
, (63)

and kn and ks are given by (53) and (58), respectively.
We simulate the nominal controller, safety-critical con-

troller, and robust safety-critical controller via numerical
integration of the model (46) from the initial condition
x(0) = [27.4, 16, 16]> ∈ C while disturbing the input using
the signal in shown in the right panel of Fig. 14. We use
parameter values as specified in Table II. We see in the
left panel of Fig. 15 that introducing the disturbance signal
into our simulation allows us to recreate the failures of the
nominal controller and safety-critical controller that we saw
experimentally in Fig. 14. Furthermore, we see that the robust
safety-critical controller maintains the safety of the system
even in the presence of the disturbance.

D. Robust Experimental Results

Here we show the results when the robust safety-critical
controller is deployed on the connected automated truck. Sets
of three experimental runs were conducted using each parame-
ter pair ε0 and λ shown in Table III. The experimental results

using the parameter set ε0 = 0.5 [s3/m] and λ = 0.4 [1/m]
(labeled as parameter pair (A)) can be seen in the right panel
of Fig. 15 and are visualized at the bottom row of Fig. 1.
With these parameters the system is rendered safe, as the
value of h does not drop below 0. Although the robust safety-
critical controller displays a larger standard deviation across
the three experimental runs compared to the nominal and
safety-critical controllers, it consistently satisfies the original
safety requirement.

When evaluating how the system behavior depends on the
values of the parameters ε0 and λ, we first consider whether
the original safety requirement is met, i.e., whether or not the
value of h remains positive. While the robust-safety critical
controller does not provide a theoretical guarantee that h will
remain non-negative (it only guarantees that h(x(t)) ≥ h∗),
for certain values of ε0 and λ the original safety requirement
are still met, as seen in the inverted pendulum example as well
as the connected automated truck experiments. The minimum
value hmin of the barrier function, observed during the exper-
imental runs, is shown in Table III. This is also visualized in
the left panel of Fig. 16, where green markers indicate sets
of parameter values for which the safety requirement is met,
and red markers indicate those for which it is not met. We
see that safety can be achieved using the original ISSf-CBF

ε0 λ h∗ hmin D̃ss

Label [s3/m] [1/m] [m] [m] [m]
(B) 0.8 0 −40.50 22.09 25.43

3 0 −151.88 2.99 6.19
(D) 4 0 −202.50 1.02 4.69

5 0 −253.13 −0.45 3.54
(A) 0.5 0.4 −4.38 0.35 4.70

0.5 0.5 −3.80 −1.27 2.22
(C) 0.8 0.25 −7.01 0.78 4.34

0.8 0.35 −5.64 −1.03 2.22
1.0 0.25 −7.59 −0.86 3.07

TABLE III. Sets of parameter values used for the exponential
function (60) in the automated truck experiments with theoretical
safety guarantee h∗, minimum experimental value of the ISSf-CBF
hmin, and shift in the steady-state tracking distance D̃ss by (64).
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Fig. 16. (Left) Parameter values for ε0 and λ used in the truck experiments, with contours showing theoretical values of h∗. Green markers
denote parameter sets which achieve the original safety goal (h ≥ 0), while red markers denote parameter sets for which the original safety
goal is violated. (Center) Theoretical values of h∗ and the shift in steady-state tracking distance, denoted by D̃ss, for the parameter sets
used in the truck experiments. The blue markers denote parameter sets with λ > 0, while the black markers denote parameter sets with
λ = 0. (Right) Experimental results for parameter pairs (B), (C) and (D) in Table III. Case (B) is highly conservative as indicated by the
large steady-state tracking distance error. Cases (C) and (D) display nearly identical behavior, though case (C) possesses a much stronger
theoretical guarantee.

formulation in [32] (where λ = 0) for sufficiently small values
of ε0, but may also be achieved using small values of λ.

We remark that when changing the controller from kQP

(cf. (57)) to krob (cf. (62)) the equilibrium of the system is
shifted as can be noticed once comparing the runs on the right
panel of Fig. 15. We characterize this by the shift in the steady-
state tracking distance error defined as

D̃ss , Dexp
ss −D∗. (64)

Here Dexp
ss is the steady-state distance captured in exper-

iments when the leader is moving with the steady-state
speed v∗ ∈ (0, vL) before braking. The term D∗ = V −1(v∗)
captures the desired steady-state distance given by the in-
verse of the range policy (54). In the experiments we have
v∗ = 16 [m/s], yielding D∗ = 25 [m]. The values of D̃ss cor-
responding to different parameter pairs are given in Table III.
In the right panel of Fig. 16 we visualize the theoretical
values of h∗ and the experimental values of D̃ss for different
parameter sets. The black markers indicate parameter sets with
λ = 0, while the blue markers show parameter sets with λ > 0.
With λ = 0, the theoretical guarantees are nearly meaningless
(observe the large negative values of h∗), and improving them
requires dramatically increasing D̃ss. In contrast, the parameter
sets with λ > 0 allow us to obtain significantly (an order
of magnitude) stronger theoretical guarantees without greatly
increasing D̃ss, thereby also achieve good performance. In the
right panel of Fig. 14 we give experimental results of three
other parameter pairs labeled as (B), (C) and (D) in Table III.
The poor performance of case (B) is indicated by the large
value of D̃ss. The results for cases (C) and (D) nearly overlap,
but the introduction of λ allows strong theoretical guarantee
for case (C) which is missing for case (D).

VI. CONCLUSION

In conclusion, this work has developed a theoretically
rigorous approach for safety-critical control synthesis through
Control Barrier Functions (CBFs). The notion of Input-to-State
Safety (ISSf) is utilized to capture the impact of disturbances
in the input to the system. A simple parametric modification to

CBFs enabled the formulation of ISSf-CBFs as a practical tool
for achieving both performant behavior and meaningful theo-
retical safety guarantees. We provided a tutorial on these tools
in the context of an inverted pendulum system, and carried out
a practical design problem of a safety-critical controller for a
connected automated truck. Moreover, we demonstrated the
tangible benefits of the design using ISSf-CBFs by deploying
this controller experimentally on an automated truck.

APPENDIX

A. Proof of Theorem 2

Proof. We first prove that the optimization problem in (18) has
a closed-form solution given by (19) and (20), thereby proving
it is feasible for any x ∈ Rn and satisfies kQP(x) ∈ KCBF(x)
for all x ∈ Rn. Then we prove that kQP is a continuous
function.

Let us first consider an x ∈ Rn such that Lgh(x) = 0. By
assumption, the function h is a CBF for (1) on the set C
with corresponding function α ∈ Ke

∞. Thus, we know from
the condition in (10) that

Lfh(x) + α(h(x)) > 0, (65)

such that the inequality constraint in (18) is satisfied for any
choice of u. The definition of a norm requires that for any
y ∈ Rm, we have ‖y‖2 ≥ 0 and ‖y‖2 = 0 implies y = 0.
Thus, we may conclude that the minimizing choice of u is
given by u = kn(x), such that kQP(x) = kn(x) as required
by the closed-form solution in (19) and (20).

Next let us consider an x ∈ Rn such that Lgh(x) 6= 0.
Observe that the cost function and constraint function defining
(18) are both convex and continuously differentiable with re-
spect to the decision variable u. Thus the optimization problem
is convex, and the Karush-Kuhn Tucker (KKT) conditions
provide a necessary and sufficient3 condition for optimality
[53, §5.5.3]. More precisely, the KKT conditions state that for

3An additional constraint qualification is necessary for the KKT conditions
to be necessary and sufficient conditions for optimality. One such qualification
is Slater’s Condition [53, §5.2.3], which is easily verified to hold in our setting.



an optimal solution u∗ ∈ Rm to (19), we must have a µ∗ ∈ R
such that:

Lfh(x) + Lgh(x)u
∗ + α(h(x)) ≥ 0, (66)

µ∗ ≥ 0, (67)
µ∗(Lfh(x) + Lgh(x)u

∗ + α(h(x))) = 0, (68)

u∗ − kn(x)− µ∗Lgh(x)
> = 0. (69)

The first and second conditions are referred to as primal and
dual feasibility, respectively. The third condition is referred
to as complementary slackness, and the fourth condition is
referred to as stationarity.

Rearranging the stationarity condition (69) yields

u∗ = kn(x) + µ∗Lgh(x)
>. (70)

To solve for the value of µ∗ (and consequently u∗), we use
the primal feasibility condition (66) and the complementary
slackness condition (68). In particular, suppose that

Lfh(x) + Lgh(x)u
∗ + α(h(x)) > 0. (71)

The complementary slackness condition (68) then implies
µ∗ = 0, and thus, we have from (70) that u∗ = kn(x). Com-
bining this with (71), we obtain

Lfh(x) + Lgh(x)kn(x) + α(h(x)) > 0. (72)

Next let us suppose that

Lfh(x) + Lgh(x)u
∗ + α(h(x)) = 0. (73)

Using the expression for u∗ in (70) yields

Lfh(x)+Lgh(x)kn(x)+µ
∗‖Lgh(x)‖22+α(h(x)) = 0, (74)

which may be solved for µ∗, yielding

µ∗ = −Lfh(x) + Lgh(x)kn(x) + α(h(x))

‖Lgh(x)‖22
. (75)

Given this expression, the dual feasibility condition (67)
requires that, if the equality in (73) holds, we must have

Lfh(x) + Lgh(x)kn(x) + α(h(x)) ≤ 0. (76)

Substituting (75) into (70) yields

u∗ = kn(x)−
Lfh(x) + Lgh(x)kn(x) + α(h(x))

‖Lgh(x)‖22
Lgh(x)

>.

(77)
Noting that (71) and (72) are equivalent, and (73) and (76) are
equivalent, we may combine these results with the preceding
results obtained for Lgh(x) = 0 and conclude that

kQP(x) = kn(x) + max{0, η(x)}Lgh(x)
>. (78)

To show the function kQP is continuous, let us first define
a function ψ : Rn → R as

ψ(x) = Lfh(x) + Lgh(x)kn(x) + α(h(x)). (79)

As h is continuously differentiable, and f ,g, and α are
continuous, we may conclude that the function ψ is continu-
ous. Consider an arbitrary state x ∈ Rn such that ψ(x) > 0,
noting that we may have Lgh(x) = 0. By (72), we have

kQP(x) = kn(x). By continuity of ψ, we may conclude that
there exists δ > 0 such that ψ(y) > 0 for all y ∈ Bδ(x) (the
open ball of radius δ centered at x). By (72) we then have that
kQP(y) = kn(y) for all y ∈ Bδ(x). As kn is continuous, we
may conclude that kQP is continuous at x.

Next consider an arbitrary state x ∈ Rn such that ψ(x) < 0,
noting that we must have Lgh(x) 6= 0 at this state. By (76)
we have

kQP(x) = kn(x)−
ψ(x)

‖Lgh(x)‖22
Lgh(x)

>. (80)

By the continuity of Lgh and ψ, we may conclude that there
exists a δ > 0 such that Lgh(y) 6= 0 and ψ(y) < 0 for all
y ∈ Bδ(x). We then have

kQP(y) = kn(y)−
ψ(y)

‖Lgh(y)‖22
Lgh(y)

>. (81)

for all y ∈ Bδ(x). As Lgh, kn, and ψ are continuous and
Lgh(x) 6= 0, we may conclude that kQP is continuous at x.

Lastly, let us consider a state x ∈ Rn such that ψ(x) = 0,
noting that we must have Lgh(x) 6= 0 at this state. By (76) and
the fact ψ(x) = 0, we have that kQP(x) = kn(x). Let ε > 0
be arbitrary. By the continuity of Lgh, we may conclude that
there exists δ1 > 0 such that Lgh(y) 6= 0 for all y ∈ Bδ1(x).
Let y ∈ Bδ1(x) be such that ψ(y) > 0. As before, we then
have kQP(y) = kn(y). By the continuity of kn, there exists
a δ2 > 0 with δ2 < δ1 such that if y ∈ Bδ2(x) and ψ(y) > 0,
then

‖kQP(y)− kQP(x)‖2 = ‖kn(y)− kn(x)‖2 < ε. (82)

Next let y ∈ Bδ1 be such that ψ(y) ≤ 0, such that kQP(y) is
given in (81). Although kQP(x) = kn(x), we may use the fact
that ψ(x) = 0 to write kQP(x) as in (80). By the continuity
of kn, ψ, and Lgh, there exists a δ3 > 0 with δ3 < δ1 such
that if y ∈ Bδ3(x) and ψ(y) ≤ 0, then

‖kn(y)− kn(x)‖2 <
ε

2
, (83)

and∥∥∥∥ ψ(y)

‖Lgh(y)‖22
Lgh(y)

> − ψ(x)

‖Lgh(x)‖22
Lgh(x)

>
∥∥∥∥

2

<
ε

2
. (84)

Therefore we have that if y ∈ Bδ3(x) and ψ(y) ≤ 0, then:

‖kQP(y)− kQP(x)‖2 <
ε

2
+
ε

2
= ε. (85)

Taking δ = min{δ2, δ3}, we have that y ∈ Bδ(x) implies:

‖kQP(y)− kQP(x)‖2 < ε, (86)

proving kQP is continuous at x. As we considered the three
cases that ψ(x) > 0, ψ(x) <0, and ψ(x) = 0, we have shown
the function kQP is continuous.
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