Safe Controller Synthesis with Tunable Input-to-State Safe Control Barrier Functions

Anil Alan^[a,*], Andrew J. Taylor^[b], Chaozhe R. He^[a,c], Gábor Orosz^[a], and Aaron D. Ames^[b]

[*] Speaker

• Consider the system

$$\dot{x} = f(x) + g(x)u$$

where state $x \in X \subseteq \mathbb{R}^n$ and input $u \in \mathbb{R}^m$

Define a *safe set* in X

 $C = \{x \in X \mid h(x) \ge 0\}$

where $h: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable.

Safety: If for any initial condition $x(0) \in C$, $x(t) \in C$ for all t (i.e., C is forward invariant), then system is *safe* with respect to C.

Control Barrier Function (CBF): The function *h* is a *CBF* if there exists a $\alpha \in K_{\infty}^{e}$ such that this satisfies:

$$\sup_{u \in \mathbb{R}^{m}} \dot{h}(x,u) = \sup_{u \in \mathbb{R}^{m}} \left[\frac{\partial h}{\partial x} f(x) + \frac{\partial h}{\partial x} g(x) u \right] > -\alpha \left(h(x) \right)$$

Extended class K_{∞} (K_{∞}^{e}) $\alpha: R \rightarrow R$

- Continuous
- $\alpha(0) = 0$
- Monotonically increasing
- $\lim_{r \to \infty} \alpha(r) \to \infty$ and

•
$$\lim_{r \to -\infty} \alpha(r) \to -\infty$$

Background

<u>Control Barrier Function (CBF)</u>: The function *h* is a *CBF* if there exists a $\alpha_c > 0$ such that this satisfies: $\sup_{u \in R^m} \dot{h}(x, u) = \sup_{u \in R^m} \left[\frac{\partial h}{\partial x} f(x) + \frac{\partial h}{\partial x} g(x) u \right] > -\alpha_c h(x)$

We define the point-wise set of controllers:

$$K_{\rm cbf}(x) = \left\{ u \in \mathbb{R}^m \mid \dot{h}(x, u) \ge -\alpha_c h(x) \right\}$$

 $L_f h(x) = L_a h(x)$

Control Barrier Function (CBF): The function *h* is a *CBF* if there exists a $\alpha_c > 0$ such that this satisfies:

$$\sup_{u \in \mathbb{R}^{m}} \dot{h}(x,u) = \sup_{u \in \mathbb{R}^{m}} \left[\frac{\partial h}{\partial x} f(x) + \frac{\partial h}{\partial x} g(x) u \right] > -\alpha_{c} h(x)$$

$$L_{f} h(x) \qquad L_{g} h(x)$$

We define the point-wise set of controllers:

$$K_{\rm cbf}(x) = \left\{ u \in \mathbb{R}^m \mid \dot{h}(x, u) \ge -\alpha_c h(x) \right\}$$

<u>**Theorem**^[1]</u>: Any controller $k(x) \in K_{cbf}(x)$ renders system safe.

[1] Ames et. al, "Control Barrier Function Based Quadratic Programs for Safety Critical Systems", *IEEE Transactions On Automatic Control*, Vol. 62, No. 8, August 2017

Example

Consider a double integrator system

$$\dot{x}_1 = -x_2$$
$$\dot{x}_2 = u$$

and safe set

$$C = \{x \in \mathbb{R}^2 \mid x_1 - x_2 \ge 0\}$$

$$h(x)$$

It can be shown the controller

$$k(x) = x_1 - 2x_2 - 1$$

renders system safe since $k(x) \in K_{cbf}(x)$ with $\alpha_c = 1$.

Background - Truck

Example

Consider a double integrator system

$$\dot{x}_1 = -x_2$$
$$\dot{x}_2 = u + d$$

where $\sup_{t \ge 0} ||d(t)|| = ||d||_{\infty} \le \delta.$

Consider the disturbance $d(t) = \delta \sin t$

Input to State Safety

Input-to-State Safety (ISSf): If there exists a larger set C_{δ} that is forward invariant in the presence of the disturbance, then the system is *input-to-state safe*. The set *C* is ISSf set.

ISSf-CBF^[2]

ISSf CBF:

$$\sup_{u \in \mathbb{R}^m} \dot{h}(x,u) > -\alpha_c h(x) + \frac{\left\| L_g h(x) \right\|^2}{\epsilon_0}$$

[2] Kolathaya et. al, "Input-to-state safety with control barrier functions", *IEEE Control Systems Letters*, Vol 3, pp 108–113, 2018.

ISSf-CBF^[2]

ISSf CBF:

$$\sup_{u \in \mathbb{R}^m} \dot{h}(x,u) > -\alpha_c h(x) + \frac{\|L_g h(x)\|^2}{\epsilon_0}$$

<u>**Theorem**^[2]</u>: Controller k(x) that satisfies ISSf-CBF condition ensures the set C_{δ} is forward invariant (i.e., *C* is *ISSf*)

 $C_{\delta} = \{ x \in X \mid h(x) + \gamma(\delta) \ge 0 \}$

Motivation

 $\begin{array}{c} \underline{\text{Trade-off:}} \\ \text{As } \epsilon_0 \uparrow \rightarrow & \text{Less conservative} \\ & \text{Large expansion} \end{array}$

Motivation

Controller:

MICHIGAN

$$k_{\text{issf}}(x) = k(x) - \frac{1}{\epsilon_0}$$

can be shown to satisfy ISSf-CBF condition.

The CBF *h* gives a measure of safety.

On the safe set boundary $\rightarrow h(x) = 0$ Not very safety critical $\rightarrow h(x) \gg 0$

Proposition: Parameterize ϵ with h(x)

<u>TISSf-CBF</u>: The function *h* is an *TISSf-CBF* if there exists a $\alpha_c > 0$ and $\epsilon: R \to R_{>0}$ such that condition below satisfies

$$\sup_{u \in \mathbb{R}^m} \dot{h}(x,u) > -\alpha_c h(x) + \frac{\left\|L_g h(x)\right\|^2}{\epsilon(h(x))}$$

<u>TISSf-CBF</u>: The function *h* is an *TISSf-CBF* if there exists a $\alpha_c > 0$ and $\epsilon: R \to R_{>0}$ such that condition below satisfies

$$\sup_{u \in \mathbb{R}^{m}} \dot{h}(x,u) > -\alpha_{c}h(x) + \frac{\left\|L_{g}h(x)\right\|^{2}}{\epsilon(h(x))}$$

We define the point-wise set of controllers:

$$K_{\text{tissf}}(x) = \left\{ u \in \mathbb{R}^m \left| \dot{h}(x,u) \ge -\alpha_c h(x) + \frac{\left\| L_g h(x) \right\|^2}{\epsilon(h(x))} \right\} \right\}$$

<u>TISSf-CBF</u>: The function *h* is an *TISSf-CBF* if there exists a $\alpha_c > 0$ and $\epsilon: R \to R_{>0}$ such that condition below satisfies

$$\sup_{u \in \mathbb{R}^{m}} \dot{h}(x,u) > -\alpha_{c}h(x) + \frac{\left\|L_{g}h(x)\right\|^{2}}{\epsilon(h(x))}$$

We define the point-wise set of controllers:

$$K_{\text{tissf}}(x) = \left\{ u \in \mathbb{R}^m \left| \dot{h}(x, u) \ge -\alpha_c h(x) + \frac{\left\| L_g h(x) \right\|^2}{\epsilon(h(x))} \right\} \right\}$$

<u>**Theorem</u>:** Any controller $k(x) \in K_{\text{tissf}}(x)$ renders the set C_{δ} forward invariant (hence *C* ISSf set) if $d\epsilon/_{dh} \ge 0$. Furthermore</u>

$$\gamma_{\rm T}(h(x),\delta) = \frac{\epsilon(h(x))\delta^2}{4\alpha_c}$$

Example

Controller:

univer MICH

$$k_{\text{tissf}}(x) = k(x) - \frac{1}{\epsilon(h(x))} \quad \text{where} \quad \epsilon(h(x)) = \epsilon_0 e^{\lambda h(x)}$$
with
can be shown $k_{\text{tissf}}(x) \in K_{\text{tissf}}(x)$

$$\epsilon_0 > 0 \text{ and } \lambda \ge 0$$

$$\int_{0}^{4} \int_{0}^{x_2} \frac{1}{2} \int_{0}^{x_1} \frac{1}{2} \int_{0}^{x_2} \frac{1}{2} \int_{0}^{x_1} \frac{1}{2} \int_{0}^{x_2} \frac{$$

Results

Results

Results

UNIVERSITY OF MICHIGAN

CDC+2021 Austin Texas

Future Work

- Determine ϵ effectively
 - With a user feedback: Preferencebased learning^[3]
- Incorporate with learning algorithms (such as RL or L-CBF^[4]) to accommodate safe exploration in the presence of uncertainty.

Applications:

• Robotics

• Autonomous vehicles including lateral dynamics

[3] Tucker et. al, "Preference-Based Learning for Exoskeleton Gait Optimization", *IEEE International Conference on Robotics and Automation (ICRA)*, pp 2351-2357, 2020.
[4] Taylor et. al, "Learning for Safety-Critical Control with Control Barrier Functions", *Proceedings of Machine Learning Research*, vol 120, pp 1–10, 2020

Thank you for listening. Questions?

Input to State Safety^[2]

Input-to-State Safety (ISSf): If there exists a larger set C_{δ} that is forward invariant in the presence of the disturbance, then the system is *input-to-state safe*. The set *C* is ISSf set.

Let us consider

$$C_{\delta} = \{ x \in X \mid h(x) + \gamma(\delta) \ge 0 \}$$

Note $\gamma \in K_{\infty} \rightarrow C \subset C_{\delta}$ for $\delta > 0$

$$\rightarrow C = C_{\delta}$$
 for $\delta = 0$

Input to State Safety

ISSF-CBF: The function *h* is an *ISSF-CBF* if there exists a $\alpha \in K_{\infty}^{e}$ and $\epsilon_{0} > 0$ such that condition below satisfies

$$\sup_{u \in \mathbb{R}^m} \dot{h}(x,u) > -\alpha(h(x)) + \frac{\|L_g h(x)\|}{\epsilon_0}$$

We define the point-wise set of controllers:

$$K_{\text{issf}}(x) = \left\{ u \in \mathbb{R}^m \left| \dot{h}(x, u) \ge -\alpha \left(h(x) \right) + \frac{\left\| L_g h(x) \right\|^2}{\epsilon_0} \right\} \right\}$$

<u>**Theorem**^[2]</u>: Any controller $k(x) \in K_{issf}(x)$ renders the set C_{δ} forward invariant (hence *C* ISSf set) for

$$\gamma(\delta) = -\alpha^{-1} \left(-\frac{\epsilon_0 \delta^2}{4} \right) \longrightarrow \gamma(\delta) = \frac{\epsilon_0 \delta^2}{4\alpha_c} \quad \text{for } \alpha(r) = \alpha_c r$$

[2] Kolathaya et. al, "Input-to-state safety with control barrier functions", *IEEE Control Systems Letters*, Vol 3, pp 108–113, 2018.

Truck Example

Longitudinal motion of a heavy-duty truck

- Preceding vehicle with emergency brake
- Both vehicle's GPS data available
- Simple (double integrator) model:

$$\begin{split} \dot{D} &= v_{\rm L} - v \\ \dot{v} &= u + d \\ \dot{v}_{\rm L} &= a_{\rm L} \end{split}$$

- A safe set *C* with a CBF: $h(D, v, v_L) = D - \widehat{D}(v, v_L)$
- Quadratic Program based controller $k_{\text{QP}}(D, v, v_{\text{L}}) = \min\{k_{n}(D, v, v_{\text{L}}) \mid k_{s}(D, v, v_{\text{L}})\}$

Nominal controller: Provably safe OVM based Connected controller Cruise Control

