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Abstract— To bring complex systems into real world envi-
ronments in a safe manner, they will have to be robust to
uncertainties—both in the environment and the system. This
paper investigates the safety of control systems under input
disturbances, wherein the disturbances can capture uncertain-
ties in the system. Safety, framed as forward invariance of sets
in the state space, is ensured with the framework of control
barrier functions (CBFs). Concretely, the definition of input-
to-state safety (ISSf) is generalized to allow the synthesis of
non-conservative, tunable controllers that are provably safe
under varying disturbances. This is achieved by formulating
the concept of tunable input-to-state safe control barrier func-
tions (TISSf-CBFs), which guarantee safety for disturbances
that vary with state and, therefore, provide less conservative
means of accommodating uncertainty. The theoretical results
are demonstrated with a simple control system with input
disturbance and also applied to design a safe connected cruise
controller for a heavy duty truck.

I. INTRODUCTION

Safety is of the utmost importance for control systems,
often prioritized over other performance requirements. A
formal definition of safety has been proposed via the forward
invariance of sets in the state space. Forward invariance
can be ensured using barrier certificates [1] and barrier
functions [2], [3]. The extension of the latter to control
barrier functions (CBF) provides a tool for control design
by imposing an easy-to-compute condition over a desired
safe set. A recent survey on CBFs can be found in [4], and
alternative methods for safety-critical control in [5], [6].

Among other relevant applications such as multi-agent
systems [7] and robotics [8], automated vehicles stand out as
a natural candidate for safety-critical control. Due to recent
developments of optical sensors and vehicle-to-everything
(V2X) communication modules, many safety hazards in
traffic can be detected. Thus, the goal of control design is
to prevent safety breaches while utilizing sensory and V2X
information. Examples of the use of control barrier functions
include adaptive and connected cruise control [2], [9] and
lane keeping [10] problems. The effectiveness of the safety-
critical control is typically demonstrated using simulations
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that may be transferred to the real world assuming that the
systems model is accurate.

Uncertainties such as unmodeled dynamics and unknown
input disturbances pose risks to guaranteeing safety in the
real-world implementations. Robust CBF methods have been
proposed to address this problem [11]–[13]. We focus on
the concept of input-to-state safety (ISSf) first introduced in
[14] and extended in [15] to address bounded disturbances
in the system’s input. In this setting safety in the presence of
disturbances is redefined as the forward invariance of a larger
set. While control design under an unknown bounded input
disturbance is possible utilizing input-to-state safety control
barrier functions (ISSf-CBF), this approach lacks flexibility
in design and often yields conservative results.

In this paper we revisit the fundamental definition of
ISSf and ISSf-CBF and generalize them to enable a tunable
control design. Our main results introduces tunable input-to-
state safety control barrier function (TISSf-CBF), a general-
ized version of ISSf-CBF, that permits controllers to provide
safety guarantees in the presence of bounded disturbances
in the input while reducing conservatism. In particular, it
allows one to tune the size of the larger invariant set so
that it approximates the safe set of the undisturbed system
without significantly impacting performance. Furthermore,
our approach may be combined with existing methods using
robust CBFs [13] when disturbances may be decoupled into
external disturbances and disturbances in the system input.
The applicability of our proposed approach is demonstrated
using a simple example as well as the real-world application
of a connected cruise controller for a heavy duty vehicle.

II. BACKGROUND AND MOTIVATION

This section presents a review of safety and control barrier
functions, followed by the notion of input-to-state safety
in the presence of input disturbances. These theoretical
concepts are illustrated with a simple example.

A. Safety and Control Barrier Functions

We consider a nonlinear control-affine system:

ẋ = f(x) + g(x)u, (1)

with state x ∈ Rn, input u ∈ Rm, and functions
f : Rn → Rn and g : Rn → Rn×m assumed to be locally
Lipschitz continuous on Rn. Using a locally Lipschitz
continuous state feedback controller k : Rn → Rm, with
u = k(x), yields the closed loop system:

ẋ = f(x) + g(x)k(x). (2)



As the functions f , g, and k are locally Lipschitz continuous,
for any initial condition x0 , x(0) ∈ Rn, there exists a
time interval I(x0) = [0, tmax) such that x(t) is the unique
solution to (2) on I(x0); see [16].

We define the notion of safety in this context as forward
invariance of a set in the state space. Specifically, suppose
there exists a set C ⊂ Rn defined as the 0-superlevel set of
a continuously differentiable function h : Rn → R:

C , {x ∈ Rn : h(x) ≥ 0} , (3)

∂C , {x ∈ Rn : h(x) = 0}, (4)

Int(C) , {x ∈ Rn : h(x) > 0}. (5)

The set C is said to be forward invariant if for any initial
condition x0 ∈ C, x(t) ∈ C for all t ∈ I(x0). In this case,
we call the system (2) safe with respect to the set C, and
refer to C as the safe set.

A continuous function α : [0,∞)→ [0,∞) is said to be
class K∞ (α ∈ K∞) if α is strictly monotonically increas-
ing with α(0) = 0 and limr→∞ α(r) =∞, and a continu-
ous function α : R→ R is said to be extended class K∞
(α ∈ K∞,e) if it belongs to K∞ and limr→−∞ α(r) = −∞.
With these definitions, control barrier functions, as defined in
[17], provide a tool for synthesizing controllers that enforce
the safety of C (where a strict inequality is used for the
reasons outlined in [13]).

Definition 1 (Control Barrier Function (CBF) [17]). Let
C ⊂ Rn be the 0-superlevel set of a continuously differen-
tiable function h : Rn → R with ∂h

∂x (x) 6= 0 when h(x) = 0.
The function h is a control barrier function (CBF) for (1)
on C if there exists α ∈ K∞,e such that for all x ∈ C:

sup
u∈Rm

ḣ(x,u) ,
∂h

∂x
(x)f(x)︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

u > −α(h(x)).

(6)

Given a CBF h for (1) and a corresponding α ∈ K∞,e, we
define the point-wise set of control values satisfying (6) as:

KCBF(x) ,
{
u ∈ Rm

∣∣∣ ḣ(x,u) ≥ −α(h(x))} . (7)

Theorem 1 ( [17]). Let C ⊂ Rn be the 0-superlevel set
of a continuously differentiable function h : Rn → R with
∂h
∂x (x) 6= 0 when h(x) = 0. If h is a CBF for (1) on C, then
any Lipschitz continuous controller with k(x) ∈ KCBF(x)
for all x ∈ C renders (2) safe with respect to the set C.

Example 1. Consider a dynamic system:

ẋ1 = −x2, ẋ2 = u, (8)

with state x ∈ R2 and input u ∈ R, a feedback controller:

k(x) = x1 − 2x2 − 1, (9)

and the CBF candidate:

h(x) = x1 − x2, (10)

that defines the set C as:

C =
{
x ∈ R2 | x1 − x2 ≥ 0

}
. (11)

The evolution of h under (2) is given by:

ḣ(x) = Lfh(x) + Lgh(x)k(x) = −x1 + x2︸ ︷︷ ︸
−h(x)

+1 > −h(x),

that is, choosing the extended class K∞ function α(r) = r
yields that k(x) ∈ KCBF(x). We present simulation results
for the closed loop system in Fig. 1(a), where all the tra-
jectories initiated from different initial conditions x(0) ∈ C
safely approach the stable equilibrium point (1, 0).

B. Input-to-State Safety

Unmodeled effects and disturbances may make it infea-
sible for a state feedback controller k(x) to be imple-
mented exactly. Instead, a potentially time-varying distur-
bance d : R≥0 → Rm is added to the controller, such that
u = k(x) + d(t), resulting in the closed loop system:

ẋ = f(x) + g(x)k(x) + g(x)d(t). (12)

The safety guarantees endowed by controllers satisfying
k(x) ∈ KCBF(x) may no longer be valid for the disturbed
closed loop system. Thus, we wish to design a safety-critical
controller that ensures safety in the presence of disturbances.
We consider the disturbed control system:

ẋ = f(x) + g(x)u+ g(x)d(t), (13)

where the disturbance d is assumed to be bounded, that
is, ‖d‖∞ = supt≥0 ‖d(t)‖ <∞. With disturbances, we look
for a larger set Cδ ⊂ Rn parameterized by δ ≥ 0, i.e., C ⊆ Cδ ,
that is forward invariant for all d satisfying ‖d‖∞ ≤ δ. We
require Cδ to grow monotonically with δ, and recover the
original safe set in the absence of the disturbance, i.e., Cδ ≡ C
when δ = 0. Thus, define a function hδ : Rn × R≥0 → R as:

hδ(x, δ) , h(x) + γ(δ), (14)

with γ ∈ K∞ and define Cδ as its 0-superlevel set:

Cδ , {x ∈ Rn : hδ(x, δ) ≥ 0} , (15)

∂Cδ , {x ∈ Rn : hδ(x, δ) = 0}, (16)

Int(Cδ) , {x ∈ Rn : hδ(x, δ) > 0}. (17)

Definition 2 (Input-to-State Safety). Let C ⊂ Rn be the
0-superlevel set of a continuously differentiable function
h : Rn → R. The system (12) is input-to-state safe (ISSf) if
there exists γ ∈ K∞ and δ ≥ 0 such that for all d satisfying
‖d‖∞ ≤ δ, the set Cδ defined by (15) is forward invariant.
In this case, we refer to the original set C as an input-to-state
safe set (ISSf set).

Given a controller k(x) that makes the undisturbed system
(2) safe with respect to the set C for a given CBF h, i.e.,
k(x) ∈ KCBF(x), we consider the following modification:

u = k(x) +
1

ε0
Lgh(x)

>, (18)



where ε0 ∈ R>0 is a positive constant. Motivated by this
controller, we give the definition of the input-to-state safe
control barrier function:

Definition 3 (Input-to-State Safe Control Barrier Function
(ISSf-CBF)). Let C ⊂ Rn be the 0-superlevel set of a contin-
uously differentiable function h : Rn → R with ∂h

∂x (x) 6= 0
when h(x) = 0. Then h is an input-to-state safe control
barrier function (ISSf-CBF) for (13) on C if there exists
α ∈ K∞,e and ε0 > 0 such that for all x ∈ Rn:

sup
u∈Rm

[Lfh(x) + Lgh(x)u] > −α(h(x)) +
‖Lgh(x)‖2

ε0
.

(19)

As with CBFs, we may define the point-wise set of control
values satisfying (19):

KISSf(x) ,
{
u ∈ Rm

∣∣∣ ḣ(x,u) ≥ −α(h(x)) + ‖Lgh(x)‖2
ε0

}
.

(20)

Theorem 2 ( [15]). Let C ⊂ Rn be the 0-superlevel set
of a continuously differentiable function h : Rn → R with
∂h
∂x (x) 6= 0 when h(x) = 0 and δ ≥ 0. If h is an ISSf-CBF
for (13) on C, then for any Lipschitz continuous controller
with k(x) ∈ KISSf for all x ∈ Rn and for all d satisfying
‖d‖∞ ≤ δ, the system (12) is safe with respect to Cδ defined
as in (15) with γ ∈ K∞ defined as:

γ(δ) , −α−1
(
−ε0δ

2

4

)
, (21)

where α−1 ∈ K∞,e. This implies C is an ISSf set.

Remark 1. The original ISSf-CBF definition proposed in [15]
requires the condition:

sup
u∈Rm

[Lfh(x) + Lgh(x)(u+ d)] > −α(h(x))− ι(‖d‖∞),

(22)
for some ι ∈ K∞. It also proves that a function satisfying
(19) meets the condition in (22) for ι defined as:

ι(‖d‖∞) ,
ε0‖d‖2∞

4
. (23)

We use the more specific definition in (19) as it is better
suited for the controller design presented in this letter.

As α−1 ∈ K∞,e, a smaller ε0 implies a smaller value of
γ(δ) for a given δ ≥ 0, which reduces the difference between
the sets C and Cδ . However, taking ε0 to be small increases
the right hand side of (19), and forces a more restrictive
safety condition to be met by k. Controllers satisfying this
more restrictive condition may lead to undesirable perfor-
mance as illustrated by the example below.

Example 2. We now introduce a disturbance to the example:

ẋ1 = −x2, ẋ2 = u+ d(t), (24)

where d : R≥0 → R. Fig. 1(b) depicts the simulation results
with the controller k(x) defined in (9) for the harmonic
disturbance d(t) = δ sin t with δ = 3. We see that the dis-
turbance makes the state trajectories leave C periodically.

Fig. 1. The sets C, Cδ and Cδ,T (shaded) and simulation results
for Examples 1-3. (a) The boundary ∂C (green) and simulated
trajectories with controller (9) without disturbance. (b) Trajectories
with disturbance. (c) The boundary ∂Cδ for ε0 = 0.1 (gray) and
ε0 = 1 (black) and simulation results for controller (25). (d) The
boundary ∂Cδ,T (red) and simulation results for controller (45).

According to (18), we consider the modified controller:

u = k(x) +
Lgh(x)

ε0
= x1 − 2x2 − 1− 1

ε0
, (25)

cf. (9). The evolution of h under (12) is given by:

Lfh(x)+Lgh(x)k(x) = −x1 + x2︸ ︷︷ ︸
−h(x)

+1+
1

ε0
> −h(x)+ 1

ε0
,

such that with α(r) = r, h is an ISSf-CBF for (24) on the
set C defined in (11). Furthermore, with −α−1(−r) = r, we
have γ(δ) = ε0δ

2

4 , yielding:

Cδ =
{
x ∈ R2

∣∣∣∣ x1 − x2 + ε0δ
2

4
≥ 0

}
. (26)

Figure 1(c) portrays the boundary ∂Cδ for ε0 = 1 (gray) and
ε0 = 0.1 (black). A larger ε0 implies a larger gap between
the original set C and the forward invariant set Cδ , and as a
result, gives way to the trajectories leaving C. In contrast, a
smaller ε0 shifts Cδ closer to C, yielding trajectories that stay
in C. This, however, comes with an expense of substantially
effecting the performance as the trajectories are pushed
further inside C.

III. MAIN RESULT

In this section, we present the main result of the paper
by introducing a new method for characterizing safety in the
presence of disturbances. It uses a more general definition of
the set Cδ to enable synthesis of controllers that can ensure
safety without compromising performance.



The previous specification of hδ and γ as in (14) and
(21), respectively, implies that the difference hδ(x)− h(x)
is constant for all x ∈ Cδ for a given δ. In other words,
requiring a constant ε0 imposes strong restrictions on the
structure of hδ(x) and Cδ . As a result, prioritizing safety
with a smaller ε0 may lead to overcompensation and may
affect the performance in an undesirable fashion. We wish
to find a new set that is still forward invariant, but allows
more flexibility in designing controllers. To this end, define
the function hδ,T : Rn × R≥0 → R as:

hδ,T(x, δ) , h(x) + γT(h(x), δ), (27)

with γT : R× R≥0 → R≥0 continuously differentiable in its
first argument and γT(a, ·) ∈ K∞ for all a ∈ R. Indeed, hδ
defined by (14) is a special case of hδ,T defined by (27). We
define Cδ,T as the 0-superlevel set of the function hδ,T:

Cδ,T , {x ∈ Rn : hδ,T(x, δ) ≥ 0} , (28)

∂Cδ,T , {x ∈ Rn : hδ,T(x, δ) = 0}, (29)

Int(Cδ,T) , {x ∈ Rn : hδ,T(x, δ) > 0}. (30)

Note that C ⊂ Cδ,T for δ > 0. In the absence of distur-
bances (δ = 0) we recover the original set (Cδ,T ≡ C) as
hδ,T(x, 0) = h(x). Also, Cδ,T grows monotonically with δ.
Analogous to (18), we propose the controller:

u = k(x) +
1

ε(h(x))
Lgh(x)

>, (31)

where ε : R→ R>0 is a continuously differentiable function
and k(x) ∈ KCBF(x). This controller motivates a generaliza-
tion of Definition 3, and a corresponding safety result.

Definition 4 (Tunable Input-to-State Safe Control Barrier
Function (TISSf-CBF)). Let C ⊂ Rn be the 0-superlevel set
of a continuously differentiable function h : Rn → R with
∂h
∂x (x) 6= 0 when h(x) = 0. Then h is a tunable input-to-
state safe control barrier function (TISSf-CBF) for (13) on
C with continuously differentiable function ε : R→ R>0 if
there exists α ∈ K∞,e such that for all x ∈ Rn:

sup
u∈Rm

[Lfh(x) + Lgh(x)u] > −α(h(x)) +
‖Lgh(x)‖2

ε(h(x))
.

(32)

As with ISSf-CBFs, we may define the point-wise set of
control values satisfying (32):

KTISSf(x) ,
{
u ∈ Rm

∣∣∣ ḣ(x,u) ≥ −α(h(x)) + ‖Lgh(x)‖2
ε(h(x))

}
.

(33)

Theorem 3. Let C ⊂ Rn be the 0-superlevel set of a contin-
uously differentiable function h : Rn → R and δ ≥ 0. If h is
a TISSf-CBF for (13) on C with continuously differentiable
function ε : R→ R>0 such that α−1 ∈ K∞,e is continuously
differentiable and ε satisfies:

dε

dr
(h(x)) ≥ 0, (34)

then for any Lipschitz continuous controller with
k(x) ∈ KTISSf(x) for all x ∈ Rn and for all d satisfying

‖d‖∞ ≤ δ, the system (12) is safe with respect to Cδ,T
defined as in (28)-(30) with γT : R× R≥0 defined as:

γT(h(x), δ) , −α−1
(
−ε(h(x))δ

2

4

)
. (35)

Proof. Our goal is to show that the set Cδ,T defined by
(28)-(30) is forward invariant. For a controller satisfying
k(x) ∈ KTISSf(x) for all x ∈ Rn, we have:

ḣ(x, t) =Lfh(x) + Lgh(x)(k(x) + d(t))

≥− α(h(x)) + ‖Lgh(x)‖2

ε(h(x))
+ Lgh(x)d(t).

(36)

Noting that:

Lgh(x)d(t) ≥ −‖Lgh(x)‖‖d‖∞≥ −‖Lgh(x)‖δ

and ε(h(x)) > 0 for all x ∈ Rn and t ≥ 0, adding and
subtracting ε(h(x))δ2

4 , and completing the squares yields:

ḣ(x, t) ≥ −α(h(x))− ε(h(x))δ2

4
. (37)

Next, taking the time derivative of the function hδ,T defined
by (27) yields:

ḣδ,T(x, δ, t) =

(
1 +

∂γT
∂h

(h(x), δ)

)
ḣ(x, t). (38)

As ε satisfies (34) and γT is defined as in (35), we have:

1 +
∂γT
∂h

(h(x), δ) > 0. (39)

Substituting (37) into (38), we obtain:

ḣδ,T(x, δ, t) ≥(
1 +

∂γT
∂h

(h(x), δ)

)(
−α(h(x))− ε(h(x))δ2

4

)
.

Next, we consider a state x ∈ ∂Cδ,T, such that hδ,T(x) = 0,
for which (27) and (35) imply:

−α(h(x))− ε(h(x))δ2

4
= 0, (40)

yielding:
ḣδ,T(x, δ, t) ≥ 0. (41)

Additionally, we have −α(h(x)) ≥ 0 when hδ,T(x) = 0 by
construction. Thus, the strict inequality in (32) requires that
∂h
∂x (x) 6= 0 for x ∈ ∂Cδ,T. Finally, we have:

∂hδ,T
∂x

(x, δ) =

(
1 +

∂γT
∂h

(h(x), δ)

)
︸ ︷︷ ︸

>0

∂h

∂x
(x) 6= 0, (42)

using (39). Therefore, Nagumo’s theorem [18] implies the
set Cδ,T is forward invariant as hδ,T(x, δ) = 0 implies
ḣδ,T(x, δ, t) ≥ 0, and ∂hδ,T

∂x (x, δ) 6= 0.
Remark 2. We note that the condition on ε in (34) is stronger
than necessary, but is an easily verifiable design condition. In
particular, ε only needs to satisfy that for δ > 0 and x ∈ Rn:

dε

dr
(h(x)) > − 4

δ2
1

Dα−1(−ε(h(x))δ2/4)
. (43)



Noting that α−1 ∈ K∞,e and is continuously differentiable
implies 0 ≤ Dα−1(−ε(h(x))δ2/4) <∞ for all x ∈ Rn.
The right-hand side of (43) approaches −∞ as δ → 0 or
Dα−1(−ε(h(x))δ2/4)→ 0, making ε unconstrained.

Example 3. For the disturbed system in Example 2 with
δ = 3, we pick the following differentiable function:

ε(h(x)) , ε0e
λh(x), (44)

with constants ε0, λ ∈ R>0. Considering the controller:

u = k(x) +
Lgh(x)

ε(h(x))
= x1 − 2x2 − 1− 1

ε0eλ(x1−x2)
, (45)

it can be shown that h as defined in (10) is a TISSf-CBF
for α(r) = r. Furthermore, the choice of the function ε with
ε0, λ > 0 in (44) satisfies the condition (34). Thus, the set:

Cδ,T =
{
x ∈ R2

∣∣∣ x1 − x2 + ε0e
λ(x1−x2)δ2

4 ≥ 0
}
, (46)

is forward invariant. It is noted that λ = 0 recovers ISSf setup
with ε(h(x)) ≡ ε0, whereas a larger λ pulls Cδ,T closer to
the safe set C, and decreases the effect of the corresponding
term in the controller (45) for h(x) > 0. We depict the set
Cδ,T in Fig. 1(d) considering ε0 = e−2, λ = 2 and along with
simulation results. All solution trajectories stay within the set
Cδ,T that is close to C, and overcompensation inside set C is
prevented as ε(h(x)) takes larger values when h(x)� 0.

Remark 3. Ensuring the forward invariance of a slightly
larger set suggests modifying the set C in the presence of
a disturbance. Specifically, considering a set C ⊆ C such
that Cδ,T ⊆ C implies the safety of the original set C.

Remark 4. Rather than utilizing (31) by modifying an exist-
ing safe controller k(x) ∈ KCBF(x), the condition (32) can
be utilized to synthesize an optimization-based controller via
the following quadratic program:

kQP(x) = argmin
u∈Rm

1

2
‖u− k(x)‖2 (TISSf-QP)

s.t. Lfh(x) + Lgh(x)u > −α(h(x)) +
‖Lgh(x)‖2

ε(h(x))
,

that may intervene less compared to (31).

IV. INPUT-TO-STATE SAFETY FOR AUTOMATED TRUCKS

Here we implement previously introduced tunable input-
to-state safe control barrier functions (TISSf-CBF) to design
the longitudinal controller of a connected automated truck
while responding to the motion of a connected vehicle ahead.
We use a simplified model to design the controller and we
demonstrate that it can maintain safety in real-world safety-
critical scenario by simulating a high-fidelity vehicle model.

Consider the simplified model for the system:

Ḋ = vL − v, v̇ = u+ d(t), v̇L = aL, (47)

where D denotes the bumper-to-bumper headway distance
between the truck and the vehicle ahead, v is the longitudinal
velocity of the truck, while vL and aL are longitudinal
velocity and acceleration of the preceding vehicle. The state

is defined by x = [D, v, vL] ∈ R3 while u denotes the input.
The input disturbance d(t) represents the unmodeled dynam-
ics, i.e., rolling resistance, air drag, powertrain dynamics and
delays related to sensing, computation and communication.
We remark that while the distance D and the velocities v, vL
can be measured by sensors, to obtain the acceleration signal
aL V2X communication is needed [9]. That is why we refer
to the controller below as connected cruise control rather
than adaptive cruise control. Finally, to incorporate physical
limitations we prescribe bounds for the input and the states:

u ∈ [−a, a], aL ∈ [−aL, aL], v, vL ∈ [0, v], (48)

where a = 6 [m/s2], a = 2 [m/s2], aL = 10 [m/s2],
aL = 3 [m/s2] and v = 20 [m/s] are considered.

In order to ensure safety the truck needs to keep a safe
distance from the preceding vehicle which may depend on
the velocities. This leads to the safety function candidate:

h(x) = D − ĥ(v, vL), (49)

where we use

ĥ(v, vL) = Dsf + θv + ηvL + ξv2 + ζvvL + ωv2L. (50)

The parameters Dsf = 2 [m], θ = 1.1 [s], η = 0.6 [s], and
ξ = −ζ = −ω = 0.03 [s2/m] are chosen such that the truck
is kept beyond a critical time headway of 1 second while
considering the physical bounds (48). It can be shown that
for (49)-(50) we have ∂h

∂x 6= 0 when h(x) = 0.
We define the set:

C =
{
x ∈ R3

∣∣∣ D − ĥ(v, vL) ≥ 0
}
, (51)

and to render it safe, we utilize a feedback controller

k(x) = k1(V (D)− v) + k2(vL − v), (52)

where k1, k2 ∈ R are the controller parameters. The first term
in (52) contains the range policy function V : R→ R≥0:

V (D) = max
{
0,min{κ(D −Dst), v}

}
, (53)

where Dst is the desired stopping distance and 1/κ defines
the desired time headway. The second term in (52) responds
to the speed mismatch. Considering α(r) = r one may
show that the parameters k1 = 0.7 [1/s], k2 = 0.75 [1/s],
κ = 0.7 [1/s], Dst = 7 [m] yield k(x) ∈ KCBF; see [9].

In order to incorporate real-world disturbances, numeri-
cal simulations are carried out using a high fidelity truck
model built in TruckSim and Simulink. This model contains
details about the engine, clutch, gearbox, tires and mechan-
ical/hydraulic braking components which inevitably delay
the realization of the longitudinal acceleration command and
considered as disturbance in the simple model (47). Pre-
recorded experimental data is used to represent the preceding
vehicle’s speed vL and acceleration aL; see Fig. 2(b,d). In
particular, the recorded data correspond to an emergency
braking scenario in city traffic where the preceding vehicle
decelerates from 15 [m/s] to a full stop with acceleration
reaching −8 [m/s2]. The simulation results are presented in
Fig. 2 as blue curves. While the truck avoids the crash, it is



Fig. 2. High-fidelity simulation results showing (a) distance, (b)
velocities, (c) the barrier function h defined by (49), and (d) input
u. Simulations are carried out with the CBF controller (52) (blue),
the ISSf-CBF controller (54) for ε0 = 1.5 (black) and ε0 = 2.5
(gray), and the TISSf-CBF controller (56) (red).

unable to maintain safety (h becomes negative in panel (c))
as the controller (52) is designed using the model (47) with
no disturbance.

Next we modify the controller (52) as:

kISSf(x) = k1(V (D)−v)+k2(vL−v)−
1

ε0

∂ĥ

∂v
(v, vL), (54)

(cf. (18)) where we used Lgh(x) = −∂ĥ∂v (v, vL). Since h is
an ISSf-CBF for any ε0 > 0 the set:

Cδ =
{
x ∈ R3

∣∣∣∣ D − ĥ(v, vL)+ε0δ24 ≥ 0

}
, (55)

is forward invariant according to Theorem 2. The correspond-
ing simulations are shown in Fig. 2 by black and gray curves
for two different values of ε0. Panel (c) shows that the system
leaves the original set C for ε0 = 2.5 (gray) as indicated
by h < 0. Choosing ε0 = 1.5 (black) ensures that h > 0, it
substantially affects the performance by making the truck to
keep larger distances even when traveling with a constant
speed (which would likely invite other vehicles to cut in).

Finally, we consider the TISSf-CBF setting and modify
the controller (52) as:

kTISSf(x) = k1(V (D)− v) + k2(vL − v)

− 1

ε0eλ(D−ĥ(v,vL))
∂ĥ

∂v
(v, vL),

(56)

with ε(h(x) as defined in (44); cf. (31). It can be verified that
any parameter combination ε0, λ > 0 make h a TISSf-CBF.
Thus, according to Theorem 3, the set:

Cδ,T =

{
x ∈ R3

∣∣∣∣D − ĥ(v, vL)+ ε0e
λ(D−ĥ(v,vL))δ2

4 ≥ 0

}
, (57)

is forward invariant. The corresponding simulation results are
shown in Fig. 2 as red curves for parameters ε0 = e−5 and

λ = 0.5. Observe that the system stays within the original set
C without leaving a large distance headway at steady state.

V. CONCLUSION

In this letter, we first reviewed the notion of input-to-
state safety formulated by input-to-state safe control barrier
functions (ISSf-CBF), and provided the conditions for the
forward invariance of a set under input disturbance. We then
presented the new tunable input-to-state safe control barrier
functions (TISSf-CBF) to remedy the lack of tunability of
the previous setup. We demonstrated the effectiveness of
the new method in simulation environment with a high
fidelity automated truck model. Future work will include
implementing a safety-critical control based on TISSf-CBF
to a real automated truck and ensuring safety experimentally.
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